Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements.

Gehring N.H., Kunz J.B., Neu-Yilik G., Breit S., Viegas M.H., Hentze M.W., Kulozik A.E.

Messenger RNAs (mRNAs) bearing premature translation termination codons (PTCs) are degraded by nonsense-mediated mRNA decay (NMD). For mammalian NMD, current models propose a linear pathway that involves the splicing-dependent deposition of exon-junction complexes (EJCs) and the sequential action of the NMD factors UPF3, UPF2, and UPF1. We show here that different EJC proteins serve as entry points for the formation of distinguishable NMD-activating mRNPs. Specifically, Y14, MAGOH, and eIF4A3 can activate NMD in an UPF2-independent manner, whereas RNPS1-induced NMD requires UPF2. We identify the relevant regions of RNPS1, eIF4A3, Y14, and MAGOH, which are essential for NMD and provide insights into the formation of complexes, that classify alternative NMD pathways. These results are integrated into a nonlinear model for mammalian NMD involving alternative routes of entry that converge at a common requirement of UPF1.

Mol. Cell 20:65-75(2005) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again