Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3.

Seth R.B., Sun L., Ea C.-K., Chen Z.J.

Viral infection triggers host innate immune responses through activation of the transcription factors NF-kappaB and IRF 3, which coordinately regulate the expression of type-I interferons such as interferon-beta (IFN-beta). Herein, we report the identification of a novel protein termed MAVS (mitochondrial antiviral signaling), which mediates the activation of NF-kappaB and IRF 3 in response to viral infection. Silencing of MAVS expression through RNA interference abolishes the activation of NF-kappaB and IRF 3 by viruses, thereby permitting viral replication. Conversely, overexpression of MAVS induces the expression of IFN-beta through activation of NF-kappaB and IRF 3, thus boosting antiviral immunity. Epistasis experiments show that MAVS is required for the phosphorylation of IRF 3 and IkappaB and functions downstream of RIG-I, an intracellular receptor for viral RNA. MAVS contains an N-terminal CARD-like domain and a C-terminal transmembrane domain, both of which are essential for MAVS signaling. The transmembrane domain targets MAVS to the mitochondria, implicating a new role of mitochondria in innate immunity.

Cell 122:669-682(2005) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again