Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

TGF-beta 1 inhibits mast cell Fc epsilon RI expression.

Gomez G., Ramirez C.D., Rivera J., Patel M., Norozian F., Wright H.V., Kashyap M.V., Barnstein B.O., Fischer-Stenger K., Schwartz L.B., Kepley C.L., Ryan J.J.

Mast cell activation through the high affinity IgE receptor (FcepsilonRI) is a critical component of atopic inflammation. The cytokine TGF-beta1 has been shown to inhibit IgE-dependent mast cell activation, possibly serving to dampen mast cell-mediated inflammatory responses. We present proof that TGF-beta1 inhibits mast cell FcepsilonRI expression through a reversible pathway that diminishes protein, but not mRNA, expression of the FcepsilonRI subunit proteins alpha, beta, and gamma. The stability of the expressed proteins and the assembled cell surface complex was unaltered by TGF-beta1 treatment. However, TGF-beta1 decreased the rate of FcepsilonRI beta-chain synthesis, arguing that this inhibitory cytokine exerts its effects at the level of mRNA translation. TGF-beta1 consistently diminished FcepsilonRI expression on cultured human or mouse mast cells as well as freshly isolated peritoneal mast cells. The related cytokines, TGF-beta2 and TGF-beta3, had similar effects. We propose that TGF-beta1 acts as a negative regulator of mast cell function, in part by decreasing FcepsilonRI expression.

J. Immunol. 174:5987-5993(2005) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again