Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes.

Kakunaga S., Ikeda W., Itoh S., Deguchi-Tawarada M., Ohtsuka T., Mizoguchi A., Takai Y.

Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules and comprise a family of four members. At the mossy fiber terminals of hippocampus, nectin-1 and nectin-3 localize at the presynaptic and postsynaptic sides of synaptic junctions, respectively, and their trans-interactions play a role in formation of synapses in cooperation with N-cadherin. Nectins are associated with the actin cytoskeleton through afadin, a nectin- and actin-filament-binding protein. Five nectin-like molecules (Necls) which have domain structures similar to those of nectins have been identified and here we characterize Necl-1/TSLL1/SynCAM3, from now on referred to as Necl-1. Tissue distribution analysis showed that Necl-1 was specifically expressed in the neural tissue. Immunofluorescence and immunoelectron microscopy revealed that Necl-1 localized at the contact sites among axons, their terminals, and glia cell processes that cooperatively formed synapses, axon bundles and myelinated axons. Necl-1 showed Ca2+-independent homophilic cell-cell adhesion activity. It furthermore showed Ca2+-independent heterophilic cell-cell adhesion activity with Necl-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 from now on referred to as Necl-2, nectin-1 and nectin-3, but not with Necl-5 or nectin-2. The C-terminal cytoplasmic region of Necl-1 did not bind afadin but bound membrane-associated guanylate kinase subfamily members that contain the L27 domain, including Dlg3, Pals2 and CASK. These results indicate that Necl-1 is a neural-tissue-specific Ca2+-independent immunoglobulin-like cell-cell adhesion molecule which potentially has membrane-associated guanylate kinase subfamily member-binding activity and localizes at the non-junctional cell-cell contact sites.

J. Cell Sci. 118:1267-1277(2005) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health