Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.

Hillier L.W., Miller W., Birney E., Warren W., Hardison R.C., Ponting C.P., Bork P., Burt D.W., Groenen M.A.M., Delany M.E., Dodgson J.B., Chinwalla A.T., Cliften P.F., Clifton S.W., Delehaunty K.D., Fronick C., Fulton R.S., Graves T.A., Kremitzki C., Layman D., Magrini V., McPherson J.D., Miner T.L., Minx P., Nash W.E., Nhan M.N., Nelson J.O., Oddy L.G., Pohl C.S., Randall-Maher J., Smith S.M., Wallis J.W., Yang S.-P., Romanov M.N., Rondelli C.M., Paton B., Smith J., Morrice D., Daniels L., Tempest H.G., Robertson L., Masabanda J.S., Griffin D.K., Vignal A., Fillon V., Jacobbson L., Kerje S., Andersson L., Crooijmans R.P., Aerts J., van der Poel J.J., Ellegren H., Caldwell R.B., Hubbard S.J., Grafham D.V., Kierzek A.M., McLaren S.R., Overton I.M., Arakawa H., Beattie K.J., Bezzubov Y., Boardman P.E., Bonfield J.K., Croning M.D.R., Davies R.M., Francis M.D., Humphray S.J., Scott C.E., Taylor R.G., Tickle C., Brown W.R.A., Rogers J., Buerstedde J.-M., Wilson S.A., Stubbs L., Ovcharenko I., Gordon L., Lucas S., Miller M.M., Inoko H., Shiina T., Kaufman J., Salomonsen J., Skjoedt K., Wong G.K.-S., Wang J., Liu B., Wang J., Yu J., Yang H., Nefedov M., Koriabine M., Dejong P.J., Goodstadt L., Webber C., Dickens N.J., Letunic I., Suyama M., Torrents D., von Mering C., Zdobnov E.M., Makova K., Nekrutenko A., Elnitski L., Eswara P., King D.C., Yang S.-P., Tyekucheva S., Radakrishnan A., Harris R.S., Chiaromonte F., Taylor J., He J., Rijnkels M., Griffiths-Jones S., Ureta-Vidal A., Hoffman M.M., Severin J., Searle S.M.J., Law A.S., Speed D., Waddington D., Cheng Z., Tuzun E., Eichler E., Bao Z., Flicek P., Shteynberg D.D., Brent M.R., Bye J.M., Huckle E.J., Chatterji S., Dewey C., Pachter L., Kouranov A., Mourelatos Z., Hatzigeorgiou A.G., Paterson A.H., Ivarie R., Brandstrom M., Axelsson E., Backstrom N., Berlin S., Webster M.T., Pourquie O., Reymond A., Ucla C., Antonarakis S.E., Long M., Emerson J.J., Betran E., Dupanloup I., Kaessmann H., Hinrichs A.S., Bejerano G., Furey T.S., Harte R.A., Raney B., Siepel A., Kent W.J., Haussler D., Eyras E., Castelo R., Abril J.F., Castellano S., Camara F., Parra G., Guigo R., Bourque G., Tesler G., Pevzner P.A., Smit A., Fulton L.A., Mardis E.R., Wilson R.K.

We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.

Nature 432:695-716(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again