Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Ankyrin-B targets beta2-spectrin to an intracellular compartment in neonatal cardiomyocytes.

Mohler P.J., Yoon W., Bennett V.

Ankyrin-B is a spectrin-binding protein that is required for localization of inositol 1,4,5-trisphosphate receptor and ryanodine receptor in neonatal cardiomyocytes. This work addresses the interaction between ankyrin-B and beta(2)-spectrin in these cells. Ankyrin-B and beta(2)-spectrin are colocalized in an intracellular striated compartment overlying the M-line and distinct from T-tubules, sarcoplasmic reticulum, Golgi, endoplasmic reticulum, lysosomes, and endosomes. Beta(2)-Spectrin is absent in ankyrin-B-null cardiomyocytes and is restored to a normal striated pattern by rescue with green fluorescent protein-220-kDa ankyrin-B. We identified two mutants (A1000P and DAR976AAA) located in the ZU5 domain which eliminate spectrin binding activity of ankyrin-B. Ankyrin-B mutants lacking spectrin binding activity are normally targeted but do not reestablish beta(2)-spectrin in ankyrin-B(+/-) cardiomyocytes. However, both mutant forms of ankyrin-B are still capable of restoring inositol 1,4,5-trisphosphate receptor localization and normal contraction frequency of cardiomyocytes. Therefore, direct binding of beta(2)-spectrin to ankyrin-B is required for the normal targeting of beta(2)-spectrin in neonatal cardiomyocytes. In contrast, ankyrin-B localization and function are independent of beta(2)-spectrin. In summary, this work demonstrates that interaction between members of the ankyrin and beta-spectrin families previously established in erythrocytes and axon initial segments also occurs in neonatal cardiomyocytes with ankyrin-B and beta(2)-spectrin. This work also establishes a functional hierarchy in which ankyrin-B determines the localization of beta(2)-spectrin and operates independently of beta(2)-spectrin in its role in organizing membrane-spanning proteins.

J. Biol. Chem. 279:40185-40193(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again