Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Nucleolar Nek11 is a novel target of Nek2A in G1/S-arrested cells.

Noguchi K., Fukazawa H., Murakami Y., Uehara Y.

We previously reported that Nek11, a member of the NIMA (never-in-mitosis A) family of kinases, is activated in G(1)/S-arrested cells. We provide herein several lines of evidence for a novel interaction between Nek11 and Nek2A. Both Nek11 and Nek2A, but not Nek2B, were detected at nucleoli, and the Nek2A-specific C-terminal end (amino acids 399-445) was responsible for nucleolar localization. Endogenous Nek11 coimmunoprecipitated with endogenous Nek2A, and non-catalytic regions of each kinase were involved in the complex formation. Nek11L interacted with phosphorylated Nek2A but barely with the kinase-inactive Nek2A (K37R) mutant. In addition, both Nek2A autophosphorylation activity and the Nek11L-Nek2A complex formation increased in G(1)/S-arrested cells. These results indicate that autophosphorylation of Nek2A could stimulate its interaction with Nek11L at the nucleolus. Moreover, Nek2 directly phosphorylated Nek11 in the C-terminal non-catalytic region and elevated Nek11 kinase activity. The non-catalytic region of Nek11 showed autoinhibitory activity through intramolecular interaction with its N-terminal catalytic domain. Nek2 dissociated this autoinhibitory interaction. Altogether, our studies demonstrate a unique mechanism of Nek11 activation by Nek2A in G(1)/S-arrested cells and suggest a novel possibility for nucleolar function of the NIMA family.

J. Biol. Chem. 279:32716-32727(2004) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again