Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta.

Hiramatsu T., Sonoda H., Takanezawa Y., Morikawa R., Ishida M., Kasahara K., Sanai Y., Taguchi R., Aoki J., Arai H.

We have identified a novel phospholipase A1, named mPA-PLA1beta, which is specifically expressed in human testis and characterized it biochemically together with previously identified mPA-PLA1alpha. The sequence of mPAPLA1beta encodes a 460-amino acid protein containing a lipase domain with significant homology to the previously identified phosphatidic acid (PA)-selective PLA1, mPA-PLA1alpha. mPA-PLA1beta contains a short lid and deleted beta9 loop, which are characteristics of PLA1 molecules in the lipase family, and is a member of a subfamily in the lipase family that includes mPA-PLA1alpha and phosphatidylserine-specific PLA1. Both mPA-PLA1beta and mPA-PLA1alpha recombinant proteins exhibited PA-specific PLA1 activity and were vanadate-sensitive. When mPAPLA1beta-expressing cells were treated with bacterial phospholipase D, the cells produced lysophosphatidic acid (LPA). In both mPA-PLA1alpha and beta-expressing cells, most of the PA generated by the phospholipase D (PLD) treatment was converted to LPA, whereas in control cells it was converted to diacylglycerol. When expressed in HeLa cells most mPA-PLA1alpha protein was recovered from the cell supernatant. By contrast, mPA-PLA1beta was recovered almost exclusively from cells. Consistent with this observation, we found that mPA-PLA1beta has higher affinity to heparin than mPA-PLA1alpha. We also found that the membrane-associated mPA-PLA1s were insoluble in solubilization by 1% Triton X-100 and were detected in Triton X-100-insoluble buoyant fractions of sucrose gradients. The present study raises the possibility that production of LPA by mPA-PLA1alpha and -beta occurs on detergent-resistant membrane domains of the cells where they compete with lipid phosphate phosphatase for PA.

J. Biol. Chem. 278:49438-49447(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again