Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration.

Xie Z., Sanada K., Samuels B.A., Shih H., Tsai L.H.

The serine/threonine kinase Cdk5 plays an essential role in neuronal positioning during corticogenesis, but the underlying mechanisms are unknown. In nonneuronal cells, the tyrosine kinase FAK is a major regulator of cell motility through focal adhesions. It is unclear whether FAK plays a role in brain development. Here, we show that FAK phosphorylation by Cdk5 at S732 is important for microtubule organization, nuclear movement, and neuronal migration. In cultured neurons, S732-phosphorylated FAK is enriched along a centrosome-associated microtubule fork that abuts the nucleus. Overexpression of the nonphosphorylatable mutant FAK S732A results in disorganization of the microtubule fork and impairment of nuclear movement in vitro, and neuronal positioning defects in vivo. These observations are reminiscent of what is seen in the Cdk5-deficient mice. Taken together, these results suggest that Cdk5 phosphorylation of FAK is critical for neuronal migration through regulation of a microtubule fork important for nuclear translocation.

Cell 114:469-482(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again