Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Initiation-mediated mRNA decay in yeast affects heat-shock mRNAs, and works through decapping and 5'-to-3' hydrolysis.

Heikkinen H.L., Llewellyn S.A., Barnes C.A.

The degradation of mRNA in the yeast Saccharomyces cerevisiae takes place through several related pathways. In the most general mRNA-decay pathway, that of poly(A)-dependent decay, the normal shortening of the poly(A) tail on an mRNA molecule by deadenylation triggers mRNA decapping by the enzyme Dcp1p, followed by exonucleolytic digestion by Xrn1p. A specialized mRNA-decay pathway, termed nonsense-mediated decay, comes into play for mRNAs that contain an early nonsense codon. This pathway operates through the Upf proteins in addition to Dcp1p and Xrn1p. Previously, we identified a different specialized mRNA-decay pathway, the initiation-mediated decay pathway, and showed that it affects two Hsp70 heat-shock mRNAs under conditions of slowed translation initiation. Here we report that initiation-mediated mRNA decay also works through the Dcp1 and Xrn1 enzymes, and requires ongoing transcription by RNA polymerase II. We show that several other heat-shock mRNAs, including two from the Hsp90 gene family and three more from the Hsp70 gene family, are also subject to initiation-mediated decay, whereas a variety of non-heat-shock mRNAs are not affected.

Nucleic Acids Res. 31:4006-4016(2003) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health