Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase.

North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E.

The silent information regulator 2 protein (Sir2p) of Saccharomyces cerevisiae is an NAD-dependent histone deacetylase that plays a critical role in transcriptional silencing. Here, we report that a human ortholog of Sir2p, sirtuin type 2 (SIRT2), is a predominantly cytoplasmic protein that colocalizes with microtubules. SIRT2 deacetylates lysine-40 of alpha-tubulin both in vitro and in vivo. Knockdown of SIRT2 via siRNA results in tubulin hyperacetylation. SIRT2 colocalizes and interacts in vivo with HDAC6, another tubulin deacetylase. Enzymatic analysis of recombinant SIRT2 in comparison to a yeast homolog of Sir2 protein (Hst2p) shows a striking preference of SIRT2 for acetylated tubulin peptide as a substrate relative to acetylated histone H3 peptide. These observations establish SIRT2 as a bona fide tubulin deacetylase.

Mol. Cell 11:437-444(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again