Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The OAR/aristaless domain of the homeodomain protein Cart1 has an attenuating role in vivo.

Brouwer A., ten Berge D., Wiegerinck R., Meijlink F.

Aristaless-related genes encode a structurally defined group of homeoproteins that share a C-terminal stretch of amino acids known as the OAR- or aristaless domain. Many aristaless-related genes have been linked to major developmental functions, but the function of the aristaless domain itself is poorly understood. Expression and functional studies have shown that a subgroup of these genes, including Prx1, Prx2, Alx3, Alx4 and Cart1, is essential for correct morphogenesis of the limbs and cranium. We now demonstrate the function of the aristaless domain in vivo by ectopically expressing normal and mutated forms of Cart1 and Alx3. Ectopic expression of Cart1 in transgenic mice does not disturb development, whereas expression of a Cart1 form from which the aristaless domain has been deleted results in severe cranial and vertebral malformations. The Alx3 protein contains a divergent aristaless domain that appears not to be functional, as ectopic expression of Alx3 results in an altered phenotype irrespective of the presence of this aristaless domain. Linking the Cart1 aristaless domain to Alx3 extinguishes teratogenicity. We show that, at the molecular level, the most important consequence of deleting the aristaless domain is increased DNA binding to its palindromic target sequence. This demonstrates that the aristaless domain functions as an intra-molecular switch to contain the activity of the transcription factor that it is part of.

Mech. Dev. 120:241-252(2003) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again