Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Novel transcription coactivator complex containing activating signal cointegrator 1.

Jung D.-J., Sung H.-S., Goo Y.-W., Lee H.M., Park O.K., Jung S.-Y., Lim J., Kim H.-J., Lee S.-K., Kim T.S., Lee J.W., Lee Y.C.

Human activating signal cointegrator 1 (hASC-1) was originally isolated as a transcriptional coactivator of nuclear receptors. Here we report that ASC-1 exists as a steady-state complex associated with three polypeptides, P200, P100, and P50, in HeLa nuclei; stimulates transactivation by serum response factor (SRF), activating protein 1 (AP-1), and nuclear factor kappaB (NF-kappaB) through direct binding to SRF, c-Jun, p50, and p65; and relieves the previously described transrepression between nuclear receptors and either AP-1 or NF-kappaB. Interestingly, ectopic expression of Caenorhabditis elegans ASC-1 (ceASC-1), an ASC-1 homologue that binds P200 and P100, like hASC-1, while weakly interacting only with p65, in HeLa cells appears to replace endogenous hASC-1 from the hASC-1 complex and exerts potent dominant-negative effects on AP-1, NF-kappaB, and SRF transactivation. In addition, neutralization of endogenous P50 by single-cell microinjection of a P50 antibody inhibits AP-1 transactivation; the inhibition is relieved by coexpression of wild-type P50, but not of P50DeltaKH, a mutant form that does not interact with P200. Overall, these results suggest that the endogenous hASC-1 complex appears to play an essential role in AP-1, SRF, and NF-kappaB transactivation and to mediate the transrepression between nuclear receptors and either AP-1 or NF-kappaB in vivo.

Mol. Cell. Biol. 22:5203-5211(2002) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again