Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension.

Rudarakanchana N., Flanagan J.A., Chen H., Upton P.D., Machado R., Patel D., Trembath R.C., Morrell N.W.

A wide range of mutations in the type II receptor for bone morphogenetic protein (BMPR-II) have been shown to underlie primary pulmonary hypertension. To determine the mechanism of altered BMPR-II function, we employed transient transfection studies in cell lines and primary cultures of pulmonary vascular smooth muscle cells using green fluorescent protein (GFP)-tagged wild-type and mutant BMPR2 constructs and confocal microscopy to localize receptors. Substitution of cysteine residues in the ligand binding or kinase domain prevented trafficking of BMPR-II to the cell surface, and reduced binding of (125)I-BMP4. In addition, transfection of cysteine-substituted BMPR-II markedly reduced basal and BMP4-stimulated transcriptional activity of a BMP/Smad responsive luciferase reporter gene (3GC2wt-Lux), compared with wild-type BMPR-II, suggesting a dominant-negative effect of these mutants on Smad signalling. In contrast, BMPR-II containing non-cysteine substitutions in the kinase domain were localized to the cell membrane, although these also suppressed the activity of 3GC2wt-Lux. Interestingly, BMPR-II mutations within the cytoplasmic tail trafficked to the cell surface, but retained the ability to activate 3GC2wt-Lux. Transfection of mutant, but not wild-type, constructs into a mouse epithelial cell line (NMuMG cells) led to activation of p38(MAPK) and increased serum-induced proliferation compared with the wild-type receptor, which was partly p38(MAPK)-dependent. We conclude that mutations in BMPR-II heterogeneously inhibit BMP/Smad-mediated signalling by diverse molecular mechanisms. However, all mutants studied demonstrate a gain of function involving upregulation of p38(MAPK)-dependent proproliferative pathways.

Hum. Mol. Genet. 11:1517-1525(2002) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again