Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples.

Hecker T.P., Grammer J.R., Gillespie G.Y., Stewart J. Jr., Gladson C.L.

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that on activation generates signals that can modulate crucial cell functions, including cell proliferation, migration, and survival. In vitro, overexpression of FAK has been shown to promote cell proliferation by signaling through the Ras/mitogen-activated protein kinase cascade in several cell types. We have shown previously that overexpression of exogenous FAK lacking alternative splicing in malignant astrocytoma clones injected intracerebrally into SCID mouse brains promotes tumor cell proliferation. Here, we show that in anaplastic astrocytoma biopsy samples, FAK is expressed as an unspliced variant and migrates with a faster mobility similar to that observed in embryonic brain. Compared with nonneoplastic adult brain biopsies, the levels of FAK protein are elevated as are its levels of activation as assessed by autophosphorylation and overall tyrosine phosphorylation. The activity of Src kinase in these tumors is also elevated, as well as the activity of Src kinase associated with FAK; the latter may result in enhanced Src kinase phosphorylation of FAK. Phosphorylated Shc is associated with FAK in the anaplastic astrocytoma biopsy samples and in astrocytoma cells overexpressing FAK in vitro but not in nonneoplastic brain biopsy samples. Elevated extracellular signal-regulated kinase-2 activation and elevated expression of cyclins D and E are also found in anaplastic astrocytoma biopsy samples. These data provide evidence that the increased FAK activity in these tumors contributes to phosphorylation of Shc and likely to the promotion of Ras activity, extracellular signal-regulated kinase-2 activation, and cell proliferation in vivo.

Cancer Res. 62:2699-2707(2002) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again