Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription.

Sewer M.B., Nguyen V.Q., Huang C.J., Tucker P.W., Kagawa N., Waterman M.R.

The first 57 bp upstream of the transcription initiation site of the human CYP17 (hCYP17) gene are essential for both basal and cAMP-dependent transcription. EMSA carried out by incubating H295R adrenocortical cell nuclear extracts with radiolabeled -57/-38 probe from the hCYP17 promoter showed the formation of three DNA-protein complexes. The fastest complex contained steroidogenic factor (SF-1) and p54(nrb)/NonO, the intermediate complex contained p54(nrb)/NonO and polypyrimidine tract-binding protein-associated splicing factor (PSF), and the slowest complex contained an SF-1/PSF/p54(nrb)/NonO complex. (Bu)(2)cAMP treatment resulted in a cAMP-inducible increase in the binding intensity of only the upper complex and also activated hCYP17 gene transcription. SF-1 coimmunoprecipitated with p54(nrb)/NonO, indicating direct interaction between these proteins. Functional assays revealed that PSF represses basal transcription. Further, the repression of hCYP17 promoter-reporter construct luciferase activity resulted from PSF interacting with the corepressor mSin3A. Trichostatin A attenuated the inhibition of basal transcription, suggesting that a histone deacetylase interacts with the SF-1/PSF/p54(nrb)/NonO/mSin3A complex. Our studies lend support to the idea that the balance between transcriptional activation and repression is essential in the control of adrenocortical steroid hormone biosynthesis.

Endocrinology 143:1280-1290(2002) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health