Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Genomic organization and transcription units of the human acyl-CoA synthetase 3 gene.

Minekura H., Kang M.-J., Inagaki Y., Suzuki H., Sato H., Fujino T., Yamamoto T.T.

Acyl-CoA synthetases (ACSs) play an essential role in fatty acid metabolism. ACS3 is an arachidonate-preferring enzyme expressed in a wide range of human tissues including brain, heart, placenta, prostate, skeletal muscle, testis and thymus. As an initial step to understanding the transcriptional regulation of the human ACS3 gene, we analyzed the genomic organization and transcription units of the human ACS3 gene. Sequence analysis of genomic clones demonstrates that the human ACS3 gene spans at least 80.6 kb and contains 17 exons. The human ACS3 gene was mapped between the sequence-tagged site markers D2S360 and WI-21901. Sequence inspection of the 5'-flanking region revealed potential DNA elements including CCAAT, AP-1, Oct-1, GATAs, SRY, CdxA, Nkx-2.5, c-Myb, HSF2, NF-AT, AP-2, NF-Y, and p300. A minimal promoter region required for the expression of the human ACS3 gene in melanoma G361 cells was determined.

Gene 278:185-192(2001) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again