Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Skeletal and cardiac ryanodine receptors bind to the Ca(2+)-sensor region of dihydropyridine receptor alpha(1C) subunit.

Mouton J., Ronjat M., Jona I., Villaz M., Feltz A., Maulet Y.

In striated muscles, excitation-contraction coupling is mediated by the functional interplay between dihydropyridine receptor L-type calcium channels (DHPR) and ryanodine receptor calcium-release channel (RyR). Although significantly different molecular mechanisms are involved in skeletal and cardiac muscles, bidirectional cross-talk between the two channels has been described in both tissues. In the present study using surface plasmon resonance spectroscopy, we demonstrate that both RyR1 and RyR2 can bind to structural elements of the C-terminal cytoplasmic domain of alpha(1C). The interaction is restricted to the CB and IQ motifs involved in the calmodulin-mediated Ca(2+)-dependent inactivation of the DHPR, suggesting functional interactions between the two channels.

FEBS Lett. 505:441-444(2001) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again