Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

A growing family of dual specificity phosphatases with low molecular masses.

Aoki N., Aoyama K., Nagata M., Matsuda T.

Five putative dual specificity protein phosphatases (DSPs), designated LMW-DSP1, -DSP4, -DSP6, -DSP10, and -DSP11, were cloned with a combination of RT-PCR and cDNA library screening strategies. Sequencing analysis revealed that all lacked the cdc25 homology domain that is conserved in most known DSPs/MAP kinase phosphatases (MKPs). LMW-DSP1 exhibited the highest similarity to plant DSPs. LMW-DSP4 exhibited the highest similarity to human YVH1 and rat GKAP, but its C-terminal region was much shorter than that of the human and rat clones. LMW-DSP6 was found to be identical to recently cloned TMDP, and LMW-DSP11 seemed to be a mouse ortholog of human VHR. LMW-DSP10 was found to have a DSP catalytic-like domain, but the critical cysteine residue for catalytic activity was missing. Recombinant LMW-DSP1, -DSP6, and -DSP11 exhibited obvious and strong activity against an artificial low molecular substrate, para-nitrophenyl phosphate (pNPP). Recombinant LMW-DSP4 exhibited slight but significant activity, whereas no activity was detected for LMW-DSP10. The phosphatase activity of the recombinant LMW-DSPs was inhibited by orthovanadate but not sodium fluoride. However, none of the DSPs could dephosphorylate MAP kinases such as ERK1, p38, and SAPK/JNK in transiently transfected COS7 cells under the conditions used. Northern blot analysis revealed that LMW-DSP1, -DSP6, -DSP10, and -DSP11 were specifically expressed in testis, while LMW-DSP4 was broadly expressed. The testis-specific expression and apparent absence of dephosphorylation action on MAP kinases suggest that LMW-DSP1, -DSP6, -DSP10, and -DSP11 play specific roles in testis. Taken together, it is conceivable that a distinct class of low molecular mass DSPs is present and plays a role in dephosphorylating unknown molecules other than MAP kinases.

J. Biochem. 130:133-140(2001) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again