Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

NF-kappa B-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kappa B1 residence.

Brasier A.R., Lu M., Hai T., Lu Y., Boldogh I.

NF-kappa B is a transcription factor whose nuclear residence is controlled by I kappa B family members. In the NF-kappa B-I kappa B autoregulatory loop, activated (nuclear) Rel A.NF-kappa B1 induces the resynthesis of I kappa B alpha recapturing nuclear Rel A back into the cytoplasm within 1 h of stimulation. In contrast, NF-kappa B1 subunits redistribute more slowly into the cytoplasm (from 6 to 12 h). Here we examine the role of inducible cytoplasmic BCL-3 expression in terminating nuclear NF-kappa B1. Although BCL-3 is a nuclear protein in B lymphocytes, surprisingly, BCL-3 is primarily a cytoplasmic protein in HepG2 cells. Cytoplasmic BCL-3 abundance is induced 6-12 h after tumor necrosis factor-alpha stimulation where it complexes with NF-kappa B1 homodimers. Moreover, BCL-3 mRNA and protein expression are induced by NF-kappa B-activating agents. Two observations are interpreted to indicate that bcl-3 is transactivated by NF-kappa B/Rel A: 1) expression of a dominant negative NF-kappa B inhibitor blocks tumor necrosis factor-alpha-induced BCL-3 expression and 2) expression of constitutively active Rel A is sufficient to induce BCL-3 expression. In gene transfer studies, we identify two high affinity NF-kappa B-binding sites, kappa B1 (located at -872 to -861 nucleotides) and kappa B2 (-106 to -96 nucleotides), and although both bind with high affinity to Rel A, only kappa B2 is required for NF-kappa B-dependent induction of the native BCL-3 promoter. Down-regulation of BCL-3 induction results in prolonged, enhanced NF-kappa B1 binding and increased NF-kappa B-dependent transcription. Together, these data suggest the presence of an NF-kappa B-BCL-3 autoregulatory loop important in terminating NF-kappa B1 action and that individual NF-kappa B isoforms are actively terminated through coordinate induction of inhibitory I kappa B molecules to restore cellular homeostasis.

J. Biol. Chem. 276:32080-32093(2001) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again