Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Cloning and expression of a novel nuclear matrix-associated protein that is regulated during the retinoic acid-induced neuronal differentiation.

Cheung W.M., Chu A.H., Chu P.W., Ip N.Y.

Retinoic acid (RA), a derivative of vitamin A, is essential for the normal patterning and neurogenesis during development. RA treatment induces growth arrest and terminal differentiation of a human embryonal carcinoma cell line (NT2) into postmitotic central nervous system neurons. Using RNA fingerprinting by arbitrarily primed polymerase chain reaction, we identified a novel serine/threonine-rich protein, RA-regulated nuclear matrix-associated protein (Ramp), that was down-regulated during the RA-induced differentiation of NT2 cells. Prominent mRNA expression of ramp could be detected in adult placenta and testis as well as in all human fetal tissues examined. The genomic clone of ramp has been mapped to the telomere of chromosome arm 1q, corresponding to band 1q32.1-32.2. Associated with the nuclear matrix of NT2 cells, Ramp translocates from the interphase nucleus to the metaphase cytoplasm during mitosis. During the late stage of cytokinesis, Ramp concentrates at the midzone of the dividing daughter cells. The transcript expression of ramp is closely correlated with the cell proliferation rate of NT2 cells. Moreover, overexpression of Ramp induces a transient increase in the proliferation rate of NT2 cells. Taken together, our data suggest that Ramp plays a role in the proliferation of the human embryonal carcinoma cells.

J. Biol. Chem. 276:17083-17091(2001) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again