Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis.

Anto R.J., Maliekal T.T., Karunagaran D.

Curcumin (diferuloyl methane), the yellow pigment in turmeric (Curcuma longa), is a potent chemopreventive agent. Curcumin induces apoptosis of several, but not all, cancer cells. Many cancer cells protect themselves against apoptosis by activating nuclear factor-kappaB (NF-kappaB)/Rel, a transcription factor that helps in cell survival. Signal-induced activation of NF-kappaB is known to be inhibited by curcumin. To understand the role of NF-kappaB in curcumin-induced apoptosis, we stably transfected relA gene encoding the p65/RelA subunit of NF-kappaB, into l-929 cells (mouse fibrosarcoma) and the relA-transfected cells were resistant to varying doses of curcumin (10(-6)-10(-4) m), whereas the parental cells underwent apoptosis in a time- and dose-dependent manner. The relA-transfected cells showed constitutive NF-kappaB DNA binding activity that could not be inhibited by curcumin and did not show nuclear condensation and DNA fragmentation upon treatment with curcumin. When a super-repressor form of IkappaB-alpha (known to inhibit NF-kappaB) was transfected transiently into relA-transfected cells, the cells were no longer resistant to curcumin. Our results highlight a critical anti-apoptotic role for NF-kappaB in curcumin-induced apoptosis.

J. Biol. Chem. 275:15601-15604(2000) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again