Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction.

Lamb D.C., Kelly D.E., Manning N.J., Kaderbhai M.A., Kelly S.L.

The widely accepted catalytic cycle of cytochromes P450 (CYP) involves the electron transfer from NADPH cytochrome P450 reductase (CPR), with a potential for second electron donation from the microsomal cytochrome b5/NADH cytochrome b5 reductase system. The latter system only supported CYP reactions inefficiently. Using purified proteins including Candida albicans CYP51 and yeast NADPH cytochrome P450 reductase, cytochrome b5 and NADH cytochrome b5 reductase, we show here that fungal CYP51 mediated sterol 14alpha-demethylation can be wholly and efficiently supported by the cytochrome b5/NADH cytochrome b5 reductase electron transport system. This alternative catalytic cycle, where both the first and second electrons were donated via the NADH cytochrome b5 electron transport system, can account for the continued ergosterol production seen in yeast strains containing a disruption of the gene encoding CPR.

FEBS Lett. 462:283-288(1999) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health