Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

The action of N-terminal acetyltransferases on yeast ribosomal proteins.

Arnold R.J., Polevoda B., Reilly J.P., Sherman F.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to determine the state of N-terminal acetylation of 68 ribosomal proteins from a normal strain of Saccharomyces cerevisiae and from the ard1-Delta, nat3-Delta, and mak3-Delta mutants (), each lacking a catalytic subunit of three different N-terminal acetyltransferases. A total 30 of the of 68 ribosomal proteins were N-terminal-acetylated, and 24 of these (80%) were NatA substrates, unacetylated in solely the ard1-Delta mutant and having mainly Ac-Ser-termini and a few with Ac-Ala- or Ac-Thr-termini. Only 4 (13%) were NatB substrates, unacetylated in solely the nat3-Delta mutant, and having Ac-Met-Asp- or Ac-Met-Glu-termini. No NatC substrates were uncovered, e.g. unacetylated in solely mak3-Delta mutants, consistent with finding that none of the ribosomal proteins had Ac-Met-Ile-, Ac-Met-Leu-, or Ac-Met-Phe-termini. Interestingly, two new types of the unusual NatD substrates were uncovered, having either Ac-Ser-Asp-Phe- or Ac-Ser-Asp-Ala-termini that were unacetylated in the ard1-Delta mutant, and only partially acetylated in the mak3-Delta mutant and, for one case, also only partially in the nat3-Delta mutant. We suggest that the acetylation of NatD substrates requires not only Ard1p and Nat1p, but also auxiliary factors that are acetylated by the Mak3p and Nat3p N-terminal acetyltransferases.

J. Biol. Chem. 274:37035-37040(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again