Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1.

Ohki I., Shimotake N., Fujita N., Nakao M., Shirakawa M.

CpG methylation in vertebrates is important for gene silencing, alterations in chromatin structure and genomic stability, and differences in the DNA-methylation status are correlated with imprinting phenomena, carcinogenesis and embryonic development. Methylation signals are interpreted by protein factors that contain shared methyl-CpG-binding domains (MBDs). We have determined the solution structure of the MBD of the human methylation-dependent transcriptional repressor MBD1 by multi-dimensional heteronuclear NMR spectroscopy. It folds into an alpha/beta-sandwich structure with characteristic loops. Basic residues conserved in the MBD family are largely confined to one face of this fold and a flexible loop, which together form a large positively charged surface. Site-directed mutagenesis and chemical shift changes upon complexing with a methylated DNA facilitated identification of this surface as the DNA interaction site. In addition to three basic residues, conserved Tyr34 and Asp32 were shown to be important for the DNA binding.

EMBO J. 18:6653-6661(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again