Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro.

Ariumi Y., Masutani M., Copeland T.D., Mimori T., Sugimura T., Shimotohno K., Ueda K., Hatanaka M., Noda M.

It has been suggested that DNA-dependent protein kinase (DNA-PK) is a central component of DNA double-strand-break repair. The mechanism of DNA-PK action, however, has not been fully understood. Poly(ADP-ribose) polymerase (PARP) is another nuclear enzyme which has high affinity to DNA ends. In this study, we analysed the interaction between these two enzymes. First, DNA-PK was found to suppress the PARP activity and alters the pattern of poly(ADP-ribosyl)ation. Although DNA-PK phosphorylates PARP in a DNA-dependent manner, this modification is unlikely to be responsible for the suppression of PARP activity, since this suppression occurs even in the absence of ATP. Conversely, PARP was found to ADP-ribosylate DNA-PK in vitro. However, the auto-phosphorylation activity of DNA-PK was not influenced by this modification. In a competitive electrophoretic mobility shift assay, Ku 70/80 complex, the DNA binding component of DNA-PK, was found to have higher affinity to a short fragment of DNA than does PARP. Furthermore, co-immunoprecipitation analysis suggested direct or close association between Ku and PARP. Thus, DNA-PK suppresses PARP activity, probably through direct binding and/or sequestration of DNA-ends which serve as an important stimulator for both enzymes.

Oncogene 18:4616-4625(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again