Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Novel glycosylated forms of human plasma endostatin and circulating endostatin-related fragments of collagen XV.

John H., Preissner K.T., Forssmann W.G., Staendker L.

Circulating elongated forms of the angiogenesis inhibitor and potential anti-cancer drug endostatin were isolated from human blood filtrate. Immunoreactive endostatin was identified by a polyclonal rabbit antiserum raised against an N-terminal epitope of the polypeptide and purified by consecutive chromatographic steps and immunoblotting. N- and C-terminal sequence analyses of the isolated molecules revealed different forms of endostatin starting with V(117)HLRPAR. lacking the last and final three residues of the noncollagenous domain 1 (NC-1) of collagen XVIII, respectively. These polypetides are found to be O-glycosylated at T(125) (residue 9) with a glycan structure of the mucin type consisting of galactose N-acetylgalactosamine and N-acetylneuraminic acid residues. Carbohydrate analyses were performed via the semiquantitative HPLC-electrospray ionization mass spectrometry (ESMS) technique after exoglycosidase hydrolysis. Circulating endostatins are present as sialoglycoprotein (22 000 and 21 841 Da +/-0.02%) and asialoglycoprotein structures (21 710 and 21 549 Da +/-0.02%), while the two completely deglycosylated forms are obtained only after enzymatic incubation. The described glycosylated endostatins may represent intermediates in the proteolytic pathway of the NC-1 domain of collagen XVIII resulting in bioactive endostatins. Furthermore, immunoreactive endostatin-related C-terminal fragments of human collagen XV are found in the hemofiltrate. These polypeptides exhibit the N-terminal sequences P(66)HLLPPP. and Y(81)EKPALH. of the collagen XV NC-1 domain. ESMS and immunoblotting analyses reveal three glycosylated polypeptides with a molecular mass ranging from 16 to 21 kDa. Due to the high degree of homology between collagen XV and collagen XVIII as well as their analoqous proteolytic processing, functional similarities of collagen XVIII- and XV-related fragments should be revealed in future experiments.

Biochemistry 38:10217-10224(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again