Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones.

Xia L., Kilb J., Wex H., Li Z., Lipyansky A., Breuil V., Stein L., Palmer J.T., Dempster D.W., Bromme D.

We have localized cathepsin K in rat osteoclasts and within exposed resorption pits by immuno-fluorescence microscopy. Intracellular staining using an antibody raised against recombinant mouse cathepsin K was vesicular and uniformly distributed throughout the cell. Confocal microscopy analysis did not reveal an accumulation of cathepsin K containing vesicles opposing the ruffled border and the resorption lacuna. Exposed resorption pits exhibited a uniform distribution of cathepsin K, and no differences were observed between the edges and the centers of the pits. The immunostaining of resorption pits with anti-cathepsin K antibodies demonstrates that the protease is secreted into the sub-osteoclastic compartment. Cathepsin K-specific inhibition using peptidyl vinyl sulfones as selective cysteine protease inactivators reduced bone resorption by 80% in a dose-dependent manner at sub-micromolar concentrations. No reduction of bone resorption was observed at those low concentrations using a potent cathepsin L, S, B-specific inhibitor. That the inhibition of bone resorption can be attributed to cathepsin K-like protease inhibition was corroborated by the selective inhibition of the osteoclastic Z-Gly-Pro-Arg-MbetaNA hydrolyzing activity by the cathepsin K, L, S, B-inhibitor, but not by the cathepsin L, B, and S inhibitor. Z-Gly-Pro-Arg-MbetaNA is efficiently hydrolyzed by cathepsin K but only poorly by cathepsins L, S, and B. On the contrary, the intracellular hydrolysis of the cathepsin B-specific substrate, Z-Arg-Arg-MbetaNA, was prevented by both types of inhibitors. The identification of cathepsin K in resorption pits and the inhibition of bone resorption and intracellular cathepsin K activity by selective vinyl sulfone inhibitors indicate the critical role of the protease in osteoclastic bone resorption.

Biol. Chem. 380:679-687(1999) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health