Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Characterization of MAD2B and other mitotic spindle checkpoint genes.

Cahill D.P., da Costa L.T., Carson-Walter E.B., Kinzler K.W., Vogelstein B., Lengauer C.

Aneuploidy is a characteristic of the majority of human cancers, and recent work has suggested that mitotic checkpoint defects play a role in its development. To further explore this issue, we isolated a novel human gene, MAD2B (MAD2L2), which is homologous to the spindle checkpoint gene MAD2 (MAD2L1). We determined the chromosomal localization of it and other spindle checkpoint genes, including MAD1L1, MAD2, BUB3, TTK (MPS1L1), and CDC20. In addition, we resolved the genomic intron-exon structure of the human BUB1 gene. We then searched for mutations in these genes in a panel of 19 aneuploid colorectal tumors. No new mutations were identified, suggesting that genes yet to be discovered are responsible for most of the checkpoint defects observed in aneuploid cancers.

Genomics 58:181-187(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again