Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Identification and characterization of a myristylated and palmitylated serine/threonine protein kinase.

Berson A.E., Young C., Morrison S.L., Fujii G.H., Sheung J., Wu B., Bolen J.B., Burkhardt A.L.

We report the molecular cloning and initial characterization of a novel fatty acid acylated serine/threonine protein kinase. The putative open reading frame is predicted to encode a 305 amino acid protein possessing a carboxy-terminal protein kinase domain and amino-terminal myristylation and palmitylation sites. The protein kinase has been accordingly denoted as the myristylated and palmitylated serine/threonine protein kinase (MPSK). Human and mouse MPSKs share approximately 93% identity at the amino acid level with complete retention of acylation sites. Radiation hybridization localized the human MPSK gene to chromosome 2q34-37. Northern analysis demonstrated that the human MPSK 1.7 kilobase mRNA is widely distributed. Epitope tagged human MPSK was found to be acylated by myristic acid at glycine residue 2 and by palmitic acid at cysteines 6 and/or 8. Palmitylation of MPSK in these experiments was found to require an intact myristylation site. While epitope tagged MPSK in immune complexes or purified human glutathione S transferase-MPSK was found to autophosphorylate at one or more threonine residues, the enzyme was not found to phosphorylate several other common exogenous substrates. Indeed, only PHAS-I was identified as an exogenous substrate which was found to be phosphorylated on threonine and serine residues.

Biochem. Biophys. Res. Commun. 259:533-538(1999) [PubMed] [Europe PMC]

UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again