Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Sanfilippo type B syndrome (mucopolysaccharidosis III B): allelic heterogeneity corresponds to the wide spectrum of clinical phenotypes.

Weber B., Guo X.-H., Kleijer W.J., van de Kamp J.J.P., Poorthuis B.J.H.M., Hopwood J.J.

Sanfilippo B syndrome (mucopolysaccharidosis IIIB, MPS IIIB) is caused by a deficiency of alpha-N-acetylglucosaminidase, a lysosomal enzyme involved in the degradation of heparan sulphate. Accumulation of the substrate in lysosomes leads to degeneration of the central nervous system with progressive dementia often combined with hyperactivity and aggressive behaviour. Age of onset and rate of progression vary considerably, whilst diagnosis is often delayed due to the absence of the pronounced skeletal changes observed in other mucopolysaccharidoses. Cloning of the gene and cDNA encoding alpha-N-acetylglucosaminidase enabled a study of the molecular basis of this syndrome. We were able to identify 31 mutations, 25 of them novel, and two polymorphisms in the 40 patients mostly of Australasian and Dutch origin included in this study. The observed allellic heterogeneity reflects the wide spectrum of clinical phenotypes reported for MPS IIIB patients. The majority of changes are missense mutations; also four nonsense and nine frameshift mutations caused by insertions or deletions were identified. Only five mutations were found in more than one patient and the observed frequencies are well below those observed for the common mutations in MPS IIIA. R643C and R297X each account for around 20% of MPS IIIB alleles in the Dutch patient group, whilst R297X, P521L, R565W and R626X each have a frequency of about 6% in Australasian patients. R643C seems to be a Dutch MPS IIIB allele and clearly confers the attenuated phenotype. One region of the gene shows a higher concentration of mutations, probably reflecting the instability of this area which contains a direct repeat. Several arginine residues seem to be 'hot-spots' for mutations, being affected by two or three individual base pair exchanges.

Eur. J. Hum. Genet. 7:34-44(1999) [PubMed] [Europe PMC]

We'd like to inform you that we have updated our Privacy Notice to comply with Europe’s new General Data Protection Regulation (GDPR) that applies since 25 May 2018.

Do not show this banner again
UniProt is an ELIXIR core data resource
Main funding by: National Institutes of Health