Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Basket 0
(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Q9WTL8

- BMAL1_MOUSE

UniProt

Q9WTL8 - BMAL1_MOUSE

Protein

Aryl hydrocarbon receptor nuclear translocator-like protein 1

Gene

Arntl

Organism
Mus musculus (Mouse)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli
    • BLAST
    • Align
    • Format
    • Add to basket
    • History
      Entry version 133 (01 Oct 2014)
      Sequence version 2 (15 Aug 2003)
      Previous versions | rss
    • Help video
    • Feedback
    • Comment

    Functioni

    Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1, NR1D2, RORA, RORB and RORG, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. ARNTL/BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1 and also genes implicated in glucose and lipid metabolism. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. May play a role in spermatogenesis; contributes to the chromatoid body assembly and physiology. The NPAS2-ARNTL/BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina.36 Publications

    Enzyme regulationi

    The redox state of the cell can modulate the transcriptional activity of the CLOCK-ARNTL/BMAL1 and NPAS2-ARNTL/BMAL1 heterodimers; NADH and NADPH enhance the DNA-binding activity of the heterodimers.

    GO - Molecular functioni

    1. bHLH transcription factor binding Source: BHF-UCL
    2. core promoter binding Source: UniProtKB
    3. core promoter sequence-specific DNA binding Source: UniProtKB
    4. DNA binding Source: UniProtKB
    5. E-box binding Source: UniProtKB
    6. protein binding Source: UniProtKB
    7. protein heterodimerization activity Source: BHF-UCL
    8. RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity Source: BHF-UCL
    9. RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription Source: BHF-UCL
    10. RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription Source: BHF-UCL
    11. sequence-specific DNA binding Source: UniProtKB
    12. sequence-specific DNA binding transcription factor activity Source: MGI
    13. signal transducer activity Source: InterPro
    14. transcription factor binding Source: MGI
    15. transcription regulatory region sequence-specific DNA binding Source: UniProtKB

    GO - Biological processi

    1. circadian regulation of gene expression Source: UniProtKB
    2. circadian rhythm Source: UniProtKB
    3. negative regulation of fat cell differentiation Source: UniProtKB
    4. negative regulation of glucocorticoid receptor signaling pathway Source: UniProtKB
    5. negative regulation of TOR signaling Source: UniProtKB
    6. negative regulation of transcription, DNA-templated Source: UniProtKB
    7. oxidative stress-induced premature senescence Source: UniProtKB
    8. positive regulation of canonical Wnt signaling pathway Source: UniProtKB
    9. positive regulation of circadian rhythm Source: UniProtKB
    10. positive regulation of skeletal muscle cell differentiation Source: UniProtKB
    11. positive regulation of transcription, DNA-templated Source: UniProtKB
    12. positive regulation of transcription from RNA polymerase II promoter Source: BHF-UCL
    13. proteasome-mediated ubiquitin-dependent protein catabolic process Source: UniProtKB
    14. protein import into nucleus, translocation Source: MGI
    15. regulation of cell cycle Source: UniProtKB
    16. regulation of cellular senescence Source: UniProtKB
    17. regulation of hair cycle Source: UniProtKB
    18. regulation of insulin secretion Source: UniProtKB
    19. regulation of neurogenesis Source: UniProtKB
    20. regulation of protein catabolic process Source: MGI
    21. regulation of transcription, DNA-templated Source: UniProtKB
    22. regulation of type B pancreatic cell development Source: UniProtKB
    23. response to redox state Source: UniProtKB
    24. spermatogenesis Source: UniProtKB
    25. transcription from RNA polymerase II promoter Source: GOC

    Keywords - Molecular functioni

    Activator

    Keywords - Biological processi

    Biological rhythms, Transcription, Transcription regulation

    Keywords - Ligandi

    DNA-binding

    Enzyme and pathway databases

    ReactomeiREACT_115781. Bmal1:Clock,Npas2 activates circadian gene expression.
    REACT_118837. Rora activates circadian gene expression.
    REACT_198351. RORA activates circadian gene expression.
    REACT_198352. REV-ERBA represses gene expression.
    REACT_198602. PPARA activates gene expression.
    REACT_198620. BMAL1:CLOCK,NPAS2 activates circadian gene expression.
    REACT_24972. Circadian Clock.

    Names & Taxonomyi

    Protein namesi
    Recommended name:
    Aryl hydrocarbon receptor nuclear translocator-like protein 1
    Alternative name(s):
    Arnt3
    Brain and muscle ARNT-like 1
    Gene namesi
    Name:Arntl
    Synonyms:Bmal1
    OrganismiMus musculus (Mouse)
    Taxonomic identifieri10090 [NCBI]
    Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
    ProteomesiUP000000589: Chromosome 7

    Organism-specific databases

    MGIiMGI:1096381. Arntl.

    Subcellular locationi

    Nucleus. Cytoplasm. NucleusPML body
    Note: Shuttles between the nucleus and the cytoplasm and this nucleocytoplasmic shuttling is essential for the nuclear accumulation of CLOCK, target gene transcription and the degradation of the CLOCK-ARNTL/BMAL1 heterodimer. The sumoylated form localizes in the PML body. Sequestered to the cytoplasm in the presence of ID2.

    GO - Cellular componenti

    1. chromatoid body Source: UniProtKB
    2. cytoplasm Source: UniProtKB
    3. cytosol Source: Reactome
    4. nuclear body Source: MGI
    5. nucleoplasm Source: Reactome
    6. nucleus Source: UniProtKB
    7. PML body Source: UniProtKB-SubCell
    8. transcription factor complex Source: UniProtKB

    Keywords - Cellular componenti

    Cytoplasm, Nucleus

    Pathology & Biotechi

    Disruption phenotypei

    Mice are characterized by reduced lifespan, and the presence of a number of pathologies characteristic of pre-mature aging and increased oxidative stress. They show impaired functional connectivity, increased oxidative damage and severe astrogliosis in the brain. They also exhibit accelerated thrombosis with elevated levels of thrombogenic factors, including VWF, SERPINE1/PAI1, and fibrinogen. Both male and female mice are infertile and male mice have low testosterone and high luteinizing hormone serum levels and a significant decrease in sperm count.4 Publications

    Mutagenesis

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Mutagenesisi38 – 392KR → AA: Loss of nuclear localization.
    Mutagenesisi97 – 971S → A: Impaired nuclear accumulation, decreased interaction with CLOCK and disruption of circadain clock function. 1 Publication
    Mutagenesisi102 – 1021L → E: Reduced CLOCK binding. Abolishes transcriptional activation by the CLOCK-ARNTL/BMAL1 heterodimer. 1 Publication
    Mutagenesisi122 – 1221L → E: Reduced CLOCK binding. Abolishes transcriptional activation by the CLOCK-ARNTL/BMAL1 heterodimer. 1 Publication
    Mutagenesisi154 – 1541L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-157. 1 Publication
    Mutagenesisi157 – 1571L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-154. 1 Publication
    Mutagenesisi230 – 2301K → R: No effect on sumoylation. 1 Publication
    Mutagenesisi236 – 2361K → R: No effect on sumoylation. 1 Publication
    Mutagenesisi259 – 2591K → R: Significant decrease in; transcriptional activity, localization in PML body, ubiquitination and proteasome-mediated proteolysis. 1 Publication
    Mutagenesisi266 – 2661K → R: Abolishes sumoylation. 1 Publication
    Mutagenesisi279 – 2791K → R: No effect on sumoylation. 1 Publication
    Mutagenesisi323 – 3231I → D: Reduced CLOCK binding. Slightly reduced transcriptional activation by the CLOCK-ARNTL/BMAL1 heterodimer. Impairs regulation of circadian clock. 1 Publication
    Mutagenesisi370 – 3701L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-374. 1 Publication
    Mutagenesisi374 – 3741L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-370. 1 Publication
    Mutagenesisi418 – 4181S → A: Decreases without abolishing O-GlcNAcylation. 1 Publication

    PTM / Processingi

    Molecule processing

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Chaini1 – 632632Aryl hydrocarbon receptor nuclear translocator-like protein 1PRO_0000127158Add
    BLAST

    Amino acid modifications

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Modified residuei17 – 171Phosphoserine; by GSK3-beta1 Publication
    Modified residuei21 – 211Phosphothreonine; by GSK3-beta1 Publication
    Modified residuei97 – 971Phosphoserine; by CK21 Publication
    Cross-linki259 – 259Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO2 and SUMO3)
    Cross-linki266 – 266Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO)
    Modified residuei544 – 5441N6-acetyllysine1 Publication

    Post-translational modificationi

    Ubiquitinated, leading to its proteasomal degradation.
    O-glycosylated; contains O-GlcNAc. O-glycosylation by OGT prevents protein degradation by inhibiting ubiquitination. It also stabilizes the CLOCK-ARNTL/BMAL1 heterodimer thereby increasing CLOCK-ARNTL/BMAL1-mediated transcription of genes in the negative loop of the circadian clock such as PER1/2/3 and CRY1/2.2 Publications
    Acetylated on Lys-544 upon dimerization with CLOCK. Acetylation facilitates CRY1-mediated repression.1 Publication
    Phosphorylated upon dimerization with CLOCK. Phosphorylation enhances the transcriptional activity, alters the subcellular localization and decreases the stability of the CLOCK-ARNTL/BMAL1 heterodimer by promoting its degradation. Phosphorylation shows circadian variations in the liver with a peak between CT10 to CT14. Phosphorylation at Ser-97 by CK2 is essential for its nuclear localization, its interaction with CLOCK and controls CLOCK nuclear entry.6 Publications
    Sumoylated on Lys-266 upon dimerization with CLOCK. Predominantly conjugated to poly-SUMO2/3 rather than SUMO1 and the level of these conjugates undergo rhythmic variation, peaking at CT9-CT12. Sumoylation localizes it exclusively to the PML body and promotes its ubiquitination in the PML body, ubiquitin-dependent proteasomal degradation and the transcriptional activity of the CLOCK-ARNTL/BMAL1 heterodimer.2 Publications

    Keywords - PTMi

    Acetylation, Glycoprotein, Isopeptide bond, Phosphoprotein, Ubl conjugation

    Proteomic databases

    PaxDbiQ9WTL8.
    PRIDEiQ9WTL8.

    PTM databases

    PhosphoSiteiQ9WTL8.

    Expressioni

    Tissue specificityi

    Expressed in liver and testis (at protein level).5 Publications

    Inductioni

    In liver, exhibits circadian rhythm expression.3 Publications

    Gene expression databases

    ArrayExpressiQ9WTL8.
    BgeeiQ9WTL8.
    GenevestigatoriQ9WTL8.

    Interactioni

    Subunit structurei

    Component of the circadian clock oscillator which includes the CRY1/2 proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS and the PER1/2/3 proteins. Efficient DNA binding requires dimerization with another bHLH protein. Heterodimerization with CLOCK is required for E-box-dependent transactivation, for CLOCK nuclear translocation and degradation, and, for phosphorylation of both CLOCK and ARNTL/BMAL1. Interacts with HSP90; with AHR in vitro, but not in vivo. Part of a nuclear complex which also includes GNB2L1/RACK1 and PRKCA; GNB2L1 and PRKCA are recruited to the complex in a circadian manner. Interacts with PER2, CRY1 and CRY2. Interaction with PER and CRY proteins requires translocation to the nucleus. Interaction of the CLOCK-ARNTL/BMAL1 heterodimer with PER or CRY inhibits transcription activation. Interaction of the CLOCK-ARNTL/BMAL1 with CRY1 is independent of DNA but with PER2 is off DNA. Interacts with CIART. Interacts with DDX4, SUMO3, OGT, EED, EZH2 and SUZ12. The CLOCK-ARNTL/BMAL1 heterodimer interacts with GSK3B. Interacts with KAT2B AND EP300. Interacts with BHLHE40/DEC1 and BHLHE41/DEC2. Interacts with ID1, ID2 and ID3. Interacts with AHR. Interacts with RELB and the interaction is enhanced in the presence of CLOCK. Interacts with MTA1.23 Publications

    Binary interactionsi

    WithEntry#Exp.IntActNotes
    ClockO0878524EBI-644534,EBI-79859
    Cry1P9778412EBI-644534,EBI-1266607
    Cry2Q99JJ14EBI-644534,EBI-1794634
    Cry2Q9R1946EBI-644534,EBI-1266619
    Parp1P111037EBI-644534,EBI-642213
    Per2O549438EBI-644534,EBI-1266779
    Ppp1caP621372EBI-644534,EBI-357187
    RORCP514492EBI-644534,EBI-3908771From a different organism.
    WDR5P619642EBI-644534,EBI-540834From a different organism.

    Protein-protein interaction databases

    BioGridi198207. 16 interactions.
    DIPiDIP-43977N.
    IntActiQ9WTL8. 20 interactions.
    MINTiMINT-1657344.

    Structurei

    Secondary structure

    1
    632
    Legend: HelixTurnBeta strand
    Show more details
    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Helixi79 – 10527
    Helixi107 – 1115
    Helixi118 – 13316
    Helixi151 – 16010
    Beta strandi164 – 1707
    Turni171 – 1733
    Beta strandi175 – 1795
    Helixi183 – 1875
    Helixi191 – 1944
    Helixi199 – 2024
    Helixi205 – 2073
    Helixi208 – 2158
    Helixi248 – 2503
    Beta strandi251 – 2599
    Beta strandi284 – 29512
    Beta strandi319 – 3268
    Beta strandi337 – 3393
    Beta strandi345 – 3506
    Beta strandi354 – 3596
    Helixi362 – 3676
    Helixi371 – 3744
    Helixi379 – 3813
    Helixi385 – 39814
    Beta strandi410 – 4134
    Beta strandi419 – 43113
    Turni432 – 4354
    Beta strandi436 – 44611

    3D structure databases

    Select the link destinations:
    PDBe
    RCSB PDB
    PDBj
    Links Updated
    EntryMethodResolution (Å)ChainPositionsPDBsum
    4F3LX-ray2.27B69-453[»]
    DisProtiDP00735.
    ProteinModelPortaliQ9WTL8.
    SMRiQ9WTL8. Positions 76-448.
    ModBaseiSearch...
    MobiDBiSearch...

    Family & Domainsi

    Domains and Repeats

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Domaini79 – 13254bHLHPROSITE-ProRule annotationAdd
    BLAST
    Domaini150 – 22273PAS 1PROSITE-ProRule annotationAdd
    BLAST
    Domaini333 – 40371PAS 2PROSITE-ProRule annotationAdd
    BLAST
    Domaini408 – 45144PACAdd
    BLAST

    Region

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Regioni514 – 59481Interaction with CIARTAdd
    BLAST

    Motif

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Motifi36 – 416Nuclear localization signal1 Publication
    Motifi149 – 15911Nuclear export signal 1Add
    BLAST
    Motifi367 – 3759Nuclear export signal 2

    Sequence similaritiesi

    Contains 1 bHLH (basic helix-loop-helix) domain.PROSITE-ProRule annotation
    Contains 2 PAS (PER-ARNT-SIM) domains.PROSITE-ProRule annotation

    Keywords - Domaini

    Repeat

    Phylogenomic databases

    eggNOGiNOG293303.
    GeneTreeiENSGT00650000092935.
    HOGENOMiHOG000234379.
    HOVERGENiHBG107503.
    InParanoidiQ9WTL8.
    KOiK02296.
    OMAiEKINTNC.
    OrthoDBiEOG7V1FQ8.
    PhylomeDBiQ9WTL8.
    TreeFamiTF319983.

    Family and domain databases

    Gene3Di4.10.280.10. 1 hit.
    InterProiIPR011598. bHLH_dom.
    IPR001067. Nuc_translocat.
    IPR001610. PAC.
    IPR000014. PAS.
    IPR013767. PAS_fold.
    [Graphical view]
    PfamiPF00010. HLH. 1 hit.
    PF00989. PAS. 1 hit.
    [Graphical view]
    PRINTSiPR00785. NCTRNSLOCATR.
    SMARTiSM00353. HLH. 1 hit.
    SM00086. PAC. 1 hit.
    SM00091. PAS. 2 hits.
    [Graphical view]
    SUPFAMiSSF47459. SSF47459. 1 hit.
    SSF55785. SSF55785. 3 hits.
    TIGRFAMsiTIGR00229. sensory_box. 1 hit.
    PROSITEiPS50888. BHLH. 1 hit.
    PS50112. PAS. 2 hits.
    [Graphical view]

    Sequences (5)i

    Sequence statusi: Complete.

    This entry describes 5 isoformsi produced by alternative splicing. Align

    Isoform 1 (identifier: Q9WTL8-1) [UniParc]FASTAAdd to Basket

    Also known as: b'

    This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

    « Hide

    MADQRMDISS TISDFMSPGP TDLLSGSLGT SGVDCNRKRK GSATDYQLDD    50
    FAFEESMDTD KDDPHGRLEY AEHQGRIKNA REAHSQIEKR RRDKMNSFID 100
    ELASLVPTCN AMSRKLDKLT VLRMAVQHMK TLRGATNPYT EANYKPTFLS 150
    DDELKHLILR AADGFLFVVG CDRGKILFVS ESVFKILNYS QNDLIGQSLF 200
    DYLHPKDIAK VKEQLSSSDT APRERLIDAK TGLPVKTDIT PGPSRLCSGA 250
    RRSFFCRMKC NRPSVKVEDK DFASTCSKKK DRKSFCTIHS TGYLKSWPPT 300
    KMGLDEDNEP DNEGCNLSCL VAIGRLHSHM VPQPANGEIR VKSMEYVSRH 350
    AIDGKFVFVD QRATAILAYL PQELLGTSCY EYFHQDDIGH LAECHRQVLQ 400
    TREKITTNCY KFKIKDGSFI TLRSRWFSFM NPWTKEVEYI VSTNTVVLAN 450
    VLEGGDPTFP QLTAPPHSMD SMLPSGEGGP KRTHPTVPGI PGGTRAGAGK 500
    IGRMIAEEIM EIHRIRGSSP SSCGSSPLNI TSTPPPDASS PGGKKILNGG 550
    TPDIPSTGLL PGQAQETPGY PYSDSSSILG ENPHIGIDMI DNDQGSSSPS 600
    NDEAAMAVIM SLLEADAGLG GPVDFSDLPW PL 632
    Length:632
    Mass (Da):69,452
    Last modified:August 15, 2003 - v2
    Checksum:i9669C3712A95C2DE
    GO
    Isoform 2 (identifier: Q9WTL8-2) [UniParc]FASTAAdd to Basket

    Also known as: b

    The sequence of this isoform differs from the canonical sequence as follows:
         48-54: Missing.

    Show »
    Length:625
    Mass (Da):68,614
    Checksum:i5A99555F851260CF
    GO
    Isoform 3 (identifier: Q9WTL8-3) [UniParc]FASTAAdd to Basket

    The sequence of this isoform differs from the canonical sequence as follows:
         49-68: Missing.
         280-280: K → KA

    Show »
    Length:613
    Mass (Da):67,200
    Checksum:i24B91BA2E81D1A25
    GO
    Isoform 4 (identifier: Q9WTL8-4) [UniParc]FASTAAdd to Basket

    The sequence of this isoform differs from the canonical sequence as follows:
         48-54: Missing.
         280-280: K → KA

    Show »
    Length:626
    Mass (Da):68,685
    Checksum:i837330EF65406CE4
    GO
    Isoform 5 (identifier: Q9WTL8-5) [UniParc]FASTAAdd to Basket

    Also known as: g'

    The sequence of this isoform differs from the canonical sequence as follows:
         48-54: Missing.
         161-483: AADGFLFVVG...PSGEGGPKRT → DVTEGRSSLS...PRLDFRLKRI
         484-632: Missing.

    Show »
    Length:222
    Mass (Da):25,061
    Checksum:i9AE175BE7F6A446C
    GO

    Experimental Info

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Sequence conflicti254 – 2541F → L in BAA76414. (PubMed:10403839)Curated
    Sequence conflicti254 – 2541F → L in BAA81898. (PubMed:10403839)Curated

    Alternative sequence

    Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
    Alternative sequencei48 – 547Missing in isoform 2, isoform 4 and isoform 5. 3 PublicationsVSP_007992
    Alternative sequencei49 – 6820Missing in isoform 3. 1 PublicationVSP_007993Add
    BLAST
    Alternative sequencei161 – 483323AADGF…GPKRT → DVTEGRSSLSPSLSSRSSII ARMTLLARACLTTCIQKILP KLRNSYLPRTLRPGSDSLMP RLDFRLKRI in isoform 5. 1 PublicationVSP_007995Add
    BLAST
    Alternative sequencei280 – 2801K → KA in isoform 3 and isoform 4. 2 PublicationsVSP_007994
    Alternative sequencei484 – 632149Missing in isoform 5. 1 PublicationVSP_007996Add
    BLAST

    Sequence databases

    Select the link destinations:
    EMBL
    GenBank
    DDBJ
    Links Updated
    AB012601 mRNA. Translation: BAA76414.1.
    AB015203 mRNA. Translation: BAA81898.1.
    AB012602 mRNA. Translation: BAA76415.1.
    AB014494 mRNA. Translation: BAA32208.1.
    BC025973 mRNA. Translation: AAH25973.1.
    BC011080 mRNA. Translation: AAH11080.1.
    CCDSiCCDS40092.1. [Q9WTL8-4]
    PIRiJE0270.
    RefSeqiNP_001229977.1. NM_001243048.1. [Q9WTL8-3]
    NP_031515.1. NM_007489.4. [Q9WTL8-4]
    XP_006507314.1. XM_006507251.1. [Q9WTL8-1]
    UniGeneiMm.440371.

    Genome annotation databases

    EnsembliENSMUST00000047321; ENSMUSP00000046235; ENSMUSG00000055116. [Q9WTL8-4]
    GeneIDi11865.
    KEGGimmu:11865.
    UCSCiuc009jhf.2. mouse. [Q9WTL8-3]
    uc009jhi.2. mouse. [Q9WTL8-2]
    uc009jhj.2. mouse. [Q9WTL8-1]

    Keywords - Coding sequence diversityi

    Alternative splicing

    Cross-referencesi

    Sequence databases

    Select the link destinations:
    EMBL
    GenBank
    DDBJ
    Links Updated
    AB012601 mRNA. Translation: BAA76414.1 .
    AB015203 mRNA. Translation: BAA81898.1 .
    AB012602 mRNA. Translation: BAA76415.1 .
    AB014494 mRNA. Translation: BAA32208.1 .
    BC025973 mRNA. Translation: AAH25973.1 .
    BC011080 mRNA. Translation: AAH11080.1 .
    CCDSi CCDS40092.1. [Q9WTL8-4 ]
    PIRi JE0270.
    RefSeqi NP_001229977.1. NM_001243048.1. [Q9WTL8-3 ]
    NP_031515.1. NM_007489.4. [Q9WTL8-4 ]
    XP_006507314.1. XM_006507251.1. [Q9WTL8-1 ]
    UniGenei Mm.440371.

    3D structure databases

    Select the link destinations:
    PDBe
    RCSB PDB
    PDBj
    Links Updated
    Entry Method Resolution (Å) Chain Positions PDBsum
    4F3L X-ray 2.27 B 69-453 [» ]
    DisProti DP00735.
    ProteinModelPortali Q9WTL8.
    SMRi Q9WTL8. Positions 76-448.
    ModBasei Search...
    MobiDBi Search...

    Protein-protein interaction databases

    BioGridi 198207. 16 interactions.
    DIPi DIP-43977N.
    IntActi Q9WTL8. 20 interactions.
    MINTi MINT-1657344.

    PTM databases

    PhosphoSitei Q9WTL8.

    Proteomic databases

    PaxDbi Q9WTL8.
    PRIDEi Q9WTL8.

    Protocols and materials databases

    Structural Biology Knowledgebase Search...

    Genome annotation databases

    Ensembli ENSMUST00000047321 ; ENSMUSP00000046235 ; ENSMUSG00000055116 . [Q9WTL8-4 ]
    GeneIDi 11865.
    KEGGi mmu:11865.
    UCSCi uc009jhf.2. mouse. [Q9WTL8-3 ]
    uc009jhi.2. mouse. [Q9WTL8-2 ]
    uc009jhj.2. mouse. [Q9WTL8-1 ]

    Organism-specific databases

    CTDi 406.
    MGIi MGI:1096381. Arntl.

    Phylogenomic databases

    eggNOGi NOG293303.
    GeneTreei ENSGT00650000092935.
    HOGENOMi HOG000234379.
    HOVERGENi HBG107503.
    InParanoidi Q9WTL8.
    KOi K02296.
    OMAi EKINTNC.
    OrthoDBi EOG7V1FQ8.
    PhylomeDBi Q9WTL8.
    TreeFami TF319983.

    Enzyme and pathway databases

    Reactomei REACT_115781. Bmal1:Clock,Npas2 activates circadian gene expression.
    REACT_118837. Rora activates circadian gene expression.
    REACT_198351. RORA activates circadian gene expression.
    REACT_198352. REV-ERBA represses gene expression.
    REACT_198602. PPARA activates gene expression.
    REACT_198620. BMAL1:CLOCK,NPAS2 activates circadian gene expression.
    REACT_24972. Circadian Clock.

    Miscellaneous databases

    NextBioi 279875.
    PROi Q9WTL8.
    SOURCEi Search...

    Gene expression databases

    ArrayExpressi Q9WTL8.
    Bgeei Q9WTL8.
    Genevestigatori Q9WTL8.

    Family and domain databases

    Gene3Di 4.10.280.10. 1 hit.
    InterProi IPR011598. bHLH_dom.
    IPR001067. Nuc_translocat.
    IPR001610. PAC.
    IPR000014. PAS.
    IPR013767. PAS_fold.
    [Graphical view ]
    Pfami PF00010. HLH. 1 hit.
    PF00989. PAS. 1 hit.
    [Graphical view ]
    PRINTSi PR00785. NCTRNSLOCATR.
    SMARTi SM00353. HLH. 1 hit.
    SM00086. PAC. 1 hit.
    SM00091. PAS. 2 hits.
    [Graphical view ]
    SUPFAMi SSF47459. SSF47459. 1 hit.
    SSF55785. SSF55785. 3 hits.
    TIGRFAMsi TIGR00229. sensory_box. 1 hit.
    PROSITEi PS50888. BHLH. 1 hit.
    PS50112. PAS. 2 hits.
    [Graphical view ]
    ProtoNeti Search...

    Publicationsi

    1. "Characterization of three splice variants and genomic organization of the mouse BMAL1 gene."
      Yu W., Ikeda M., Abe H., Honma S., Ebisawa T., Yamauchi T., Honma K., Nomura M.
      Biochem. Biophys. Res. Commun. 260:760-767(1999) [PubMed] [Europe PMC] [Abstract]
      Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1; 2 AND 5).
      Tissue: Brain.
    2. "Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock."
      Takahata S., Sogawa K., Kobayashi A., Ema M., Mimura J., Ozaki N., Fujii-Kuriyama Y.
      Biochem. Biophys. Res. Commun. 248:789-794(1998) [PubMed] [Europe PMC] [Abstract]
      Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 4).
    3. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
      The MGC Project Team
      Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
      Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 3 AND 4).
    4. Cited for: INTERACTION WITH CLOCK.
    5. "Posttranslational mechanisms regulate the mammalian circadian clock."
      Lee C., Etchegaray J.-P., Cagampang F.R.A., Loudon A.S.I., Reppert S.M.
      Cell 107:855-867(2001) [PubMed] [Europe PMC] [Abstract]
      Cited for: PHOSPHORYLATION, SUBCELLULAR LOCATION.
    6. "Dec1 and Dec2 are regulators of the mammalian molecular clock."
      Honma S., Kawamoto T., Takagi Y., Fujimoto K., Sato F., Noshiro M., Kato Y., Honma K.I.
      Nature 419:841-844(2002) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH BHLHE40 AND BHLHE41.
    7. "BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system."
      Kondratov R.V., Chernov M.V., Kondratova A.A., Gorbacheva V.Y., Gudkov A.V., Antoch M.P.
      Genes Dev. 17:1921-1932(2003) [PubMed] [Europe PMC] [Abstract]
      Cited for: PHOSPHORYLATION, SUBCELLULAR LOCATION.
    8. Cited for: FUNCTION.
    9. Cited for: SUMOYLATION AT LYS-266, MUTAGENESIS OF LYS-230; LYS-236; LYS-266 AND LYS-279.
    10. "BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer."
      Kwon I., Lee J., Chang S.H., Jung N.C., Lee B.J., Son G.H., Kim K., Lee K.H.
      Mol. Cell. Biol. 26:7318-7330(2006) [PubMed] [Europe PMC] [Abstract]
      Cited for: SUBCELLULAR LOCATION, NUCLEAR LOCALIZATION SIGNAL, NUCLEAR EXPORT SIGNAL, INTERACTION WITH CLOCK, MUTAGENESIS OF 38-LYS-ARG-39; LEU-154; LEU-157; LEU-370 AND LEU-374, UBIQUITINATION, PROTEASOMAL DEGRADATION.
    11. "Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5."
      Partch C.L., Shields K.F., Thompson C.L., Selby C.P., Sancar A.
      Proc. Natl. Acad. Sci. U.S.A. 103:10467-10472(2006) [PubMed] [Europe PMC] [Abstract]
      Cited for: TISSUE SPECIFICITY, INDUCTION.
    12. "CLOCK-mediated acetylation of BMAL1 controls circadian function."
      Hirayama J., Sahar S., Grimaldi B., Tamaru T., Takamatsu K., Nakahata Y., Sassone-Corsi P.
      Nature 450:1086-1090(2007) [PubMed] [Europe PMC] [Abstract]
      Cited for: ACETYLATION AT LYS-544.
    13. "Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK."
      Langmesser S., Tallone T., Bordon A., Rusconi S., Albrecht U.
      BMC Mol. Biol. 9:41-41(2008) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH CRY1; CRY2 AND PER2.
    14. "The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice."
      Alvarez J.D., Hansen A., Ord T., Bebas P., Chappell P.E., Giebultowicz J.M., Williams C., Moss S., Sehgal A.
      J. Biol. Rhythms 23:26-36(2008) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    15. "Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators."
      Bertolucci C., Cavallari N., Colognesi I., Aguzzi J., Chen Z., Caruso P., Foa A., Tosini G., Bernardi F., Pinotti M.
      Mol. Cell. Biol. 28:3070-3075(2008) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    16. "Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex."
      Lee J., Lee Y., Lee M.J., Park E., Kang S.H., Chung C.H., Lee K.H., Kim K.
      Mol. Cell. Biol. 28:6056-6065(2008) [PubMed] [Europe PMC] [Abstract]
      Cited for: SUMOYLATION AT LYS-259, SUBCELLULAR LOCATION, INTERACTION WITH SUMO3, MUTAGENESIS OF LYS-259, UBIQUITINATION, PROTEASOMAL DEGRADATION.
    17. "A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation."
      Spengler M.L., Kuropatwinski K.K., Schumer M., Antoch M.P.
      Cell Cycle 8:4138-4146(2009) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH GSK3B AND CLOCK, PHOSPHORYLATION.
    18. "Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications."
      Nader N., Chrousos G.P., Kino T.
      FASEB J. 23:1572-1583(2009) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    19. "Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription."
      Sasaki M., Yoshitane H., Du N.H., Okano T., Fukada Y.
      J. Biol. Chem. 284:25149-25159(2009) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, INTERACTION WITH PER2.
    20. "Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription."
      Yoshitane H., Takao T., Satomi Y., Du N.H., Okano T., Fukada Y.
      Mol. Cell. Biol. 29:3675-3686(2009) [PubMed] [Europe PMC] [Abstract]
      Cited for: PHOSPHORYLATION.
    21. Cited for: PHOSPHORYLATION AT SER-97, SUBCELLULAR LOCATION, MUTAGENESIS OF SER-97, INTERACTION WITH CLOCK.
    22. "Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1."
      Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P.
      Science 324:654-657(2009) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    23. "Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction."
      Ozber N., Baris I., Tatlici G., Gur I., Kilinc S., Unal E.B., Kavakli I.H.
      BMC Mol. Biol. 11:69-69(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, INTERACTION WITH CRY2.
    24. "Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2."
      Shi S., Hida A., McGuinness O.P., Wasserman D.H., Yamazaki S., Johnson C.H.
      Curr. Biol. 20:316-321(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    25. "CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2."
      Doi R., Oishi K., Ishida N.
      J. Biol. Chem. 285:22114-22121(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    26. "The transcriptional repressor ID2 can interact with the canonical clock components CLOCK and BMAL1 and mediate inhibitory effects on mPer1 expression."
      Ward S.M., Fernando S.J., Hou T.Y., Duffield G.E.
      J. Biol. Chem. 285:38987-39000(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: SUBCELLULAR LOCATION, INTERACTION WITH ID1; ID2 AND ID3.
    27. Cited for: FUNCTION.
    28. "Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation."
      Sahar S., Zocchi L., Kinoshita C., Borrelli E., Sassone-Corsi P.
      PLoS ONE 5:E8561-E8561(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: PHOSPHORYLATION AT SER-17 AND THR-21, INTERACTION WITH GSK3B.
    29. Cited for: FUNCTION.
    30. "Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock."
      Robles M.S., Boyault C., Knutti D., Padmanabhan K., Weitz C.J.
      Science 327:463-466(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH GNB2L1 AND PRKCA, SUBCELLULAR LOCATION, IDENTIFICATION BY MASS SPECTROMETRY.
    31. "Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene."
      Xu C.X., Krager S.L., Liao D.F., Tischkau S.A.
      Toxicol. Sci. 115:98-108(2010) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH AHR.
    32. "Circadian clock protein BMAL1 regulates cellular senescence in vivo."
      Khapre R.V., Kondratova A.A., Susova O., Kondratov R.V.
      Cell Cycle 10:4162-4169(2011) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    33. "Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated insulin secretion in beta-cells."
      Lee J., Kim M.S., Li R., Liu V.Y., Fu L., Moore D.D., Ma K., Yechoor V.K.
      Islets 3:381-388(2011) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    34. "Biochemical analysis of the canonical model for the mammalian circadian clock."
      Ye R., Selby C.P., Ozturk N., Annayev Y., Sancar A.
      J. Biol. Chem. 286:25891-25902(2011) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH CLOCK; CRY1 AND PER2.
    35. "cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene."
      Koyanagi S., Hamdan A.M., Horiguchi M., Kusunose N., Okamoto A., Matsunaga N., Ohdo S.
      J. Biol. Chem. 286:32416-32423(2011) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    36. "Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phenotype."
      Somanath P.R., Podrez E.A., Chen J., Ma Y., Marchant K., Antoch M., Byzova T.V.
      J. Cell. Physiol. 226:132-140(2011) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    37. "Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation."
      Shimba S., Ogawa T., Hitosugi S., Ichihashi Y., Nakadaira Y., Kobayashi M., Tezuka M., Kosuge Y., Ishige K., Ito Y., Komiyama K., Okamatsu-Ogura Y., Kimura K., Saito M.
      PLoS ONE 6:E25231-E25231(2011) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    38. "The RelB subunit of NFkappaB acts as a negative regulator of circadian gene expression."
      Bellet M.M., Zocchi L., Sassone-Corsi P.
      Cell Cycle 11:3304-3311(2012) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH RELB.
    39. "The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway."
      Guo B., Chatterjee S., Li L., Kim J.M., Lee J., Yechoor V.K., Minze L.J., Hsueh W., Ma K.
      FASEB J. 26:3453-3463(2012) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    40. "Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome."
      Stratmann M., Suter D.M., Molina N., Naef F., Schibler U.
      Mol. Cell 48:277-287(2012) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    41. "Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells."
      Peruquetti R.L., de Mateo S., Sassone-Corsi P.
      PLoS ONE 7:E42695-E42695(2012) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, INTERACTION WITH DDX4.
    42. "A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention."
      Richards J., Cheng K.Y., All S., Skopis G., Jeffers L., Lynch I.J., Wingo C.S., Gumz M.L.
      Am. J. Physiol. 305:F1697-F1704(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: INTERACTION WITH PER1, TISSUE SPECIFICITY.
    43. "High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice."
      Barclay J.L., Shostak A., Leliavski A., Tsang A.H., Johren O., Muller-Fielitz H., Landgraf D., Naujokat N., van der Horst G.T., Oster H.
      Am. J. Physiol. 304:E1053-E1063(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: TISSUE SPECIFICITY, INDUCTION.
    44. "Mechanism of the circadian clock in physiology."
      Richards J., Gumz M.L.
      Am. J. Physiol. 304:R1053-R1064(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: REVIEW.
    45. "The clock gene brain and muscle Arnt-like protein-1 (BMAL1) is involved in hair growth."
      Watabe Y., Tomioka M., Watabe A., Aihara M., Shimba S., Inoue H.
      Arch. Dermatol. Res. 305:755-761(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    46. "The molecular clock regulates circadian transcription of tissue factor gene."
      Oishi K., Koyanagi S., Ohkura N.
      Biochem. Biophys. Res. Commun. 431:332-335(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    47. "O-GlcNAcylation of BMAL1 regulates circadian rhythms in NIH3T3 fibroblasts."
      Ma Y.T., Luo H., Guan W.J., Zhang H., Chen C., Wang Z., Li J.D.
      Biochem. Biophys. Res. Commun. 431:382-387(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: GLYCOSYLATION, INTERACTION WITH OGT.
    48. "Effects of NAD(P)H and its derivatives on the DNA-binding activity of NPAS2, a mammalian circadian transcription factor."
      Yoshii K., Ishijima S., Sagami I.
      Biochem. Biophys. Res. Commun. 437:386-391(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: DNA-BINDING.
    49. "O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination."
      Li M.D., Ruan H.B., Hughes M.E., Lee J.S., Singh J.P., Jones S.P., Nitabach M.N., Yang X.
      Cell Metab. 17:303-310(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: GLYCOSYLATION, UBIQUITINATION, MUTAGENESIS OF SER-418.
    50. "The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit."
      Bouchard-Cannon P., Mendoza-Viveros L., Yuen A., Kaern M., Cheng H.Y.
      Cell Rep. 5:961-973(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    51. Cited for: FUNCTION.
    52. Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    53. "Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells."
      Hwang C.K., Chaurasia S.S., Jackson C.R., Chan G.C., Storm D.R., Iuvone P.M.
      J. Neurosci. 33:14989-14997(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    54. "Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice."
      Lee J., Moulik M., Fang Z., Saha P., Zou F., Xu Y., Nelson D.L., Ma K., Moore D.D., Yechoor V.K.
      Mol. Cell. Biol. 33:2327-2338(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    55. "Metastasis-associated protein 1 is an integral component of the circadian molecular machinery."
      Li D.Q., Pakala S.B., Reddy S.D., Peng S., Balasenthil S., Deng C.X., Lee C.C., Rea M.A., Kumar R.
      Nat. Commun. 4:2545-2545(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, INTERACTION WITH MTA1.
    56. "Global loss of Bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism."
      Kennaway D.J., Varcoe T.J., Voultsios A., Boden M.J.
      PLoS ONE 8:E65255-E65255(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    57. "Metabolism and the circadian clock converge."
      Eckel-Mahan K., Sassone-Corsi P.
      Physiol. Rev. 93:107-135(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: REVIEW.
    58. "Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes."
      Nguyen K.D., Fentress S.J., Qiu Y., Yun K., Cox J.S., Chawla A.
      Science 341:1483-1488(2013) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, INTERACTION WITH CLOCK; EED; EZH2 AND SUZ12.
    59. "BMAL1-dependent regulation of the mTOR signaling pathway delays aging."
      Khapre R.V., Kondratova A.A., Patel S., Dubrovsky Y., Wrobel M., Antoch M.P., Kondratov R.V.
      Aging (Albany NY) 6:48-57(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    60. "Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice."
      Noh J.Y., Han D.H., Kim M.H., Ko I.G., Kim S.E., Park N., Kyoung Choe H., Kim K.H., Kim K., Kim C.J., Cho S.
      Exp. Mol. Med. 46:E81-E81(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: INDUCTION, TISSUE SPECIFICITY.
    61. "CLOCK:BMAL1 is a pioneer-like transcription factor."
      Menet J.S., Pescatore S., Rosbash M.
      Genes Dev. 28:8-13(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    62. "CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity via SIRT1."
      Zhou B., Zhang Y., Zhang F., Xia Y., Liu J., Huang R., Wang Y., Hu Y., Wu J., Dai C., Wang H., Tu Y., Peng X., Wang Y., Zhai Q.
      Hepatology 59:2196-2206(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION.
    63. "Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression."
      Annayev Y., Adar S., Chiou Y.Y., Lieb J., Sancar A., Ye R.
      J. Biol. Chem. 289:5013-5024(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION, INTERACTION WITH CIART.
    64. "Modulation of glucocorticoid receptor induction properties by core circadian clock proteins."
      Han D.H., Lee Y.J., Kim K., Kim C.J., Cho S.
      Mol. Cell. Endocrinol. 383:170-180(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: FUNCTION IN GR REPRESSION.
    65. Cited for: FUNCTION, INTERACTION WITH CIART.
    66. "Molecular architecture of the mammalian circadian clock."
      Partch C.L., Green C.B., Takahashi J.S.
      Trends Cell Biol. 24:90-99(2014) [PubMed] [Europe PMC] [Abstract]
      Cited for: REVIEW.
    67. "Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex."
      Huang N., Chelliah Y., Shan Y., Taylor C.A., Yoo S.H., Partch C., Green C.B., Zhang H., Takahashi J.S.
      Science 337:189-194(2012) [PubMed] [Europe PMC] [Abstract]
      Cited for: X-RAY CRYSTALLOGRAPHY (2.27 ANGSTROMS) OF 69-453 IN COMPLEX WITH CLOCK, FUNCTION, INTERACTION WITH CLOCK, MUTAGENESIS OF LEU-102; LEU-122 AND ILE-323.

    Entry informationi

    Entry nameiBMAL1_MOUSE
    AccessioniPrimary (citable) accession number: Q9WTL8
    Secondary accession number(s): O88295
    , Q921S4, Q9R0U2, Q9WTL9
    Entry historyi
    Integrated into UniProtKB/Swiss-Prot: August 15, 2003
    Last sequence update: August 15, 2003
    Last modified: October 1, 2014
    This is version 133 of the entry and version 2 of the sequence. [Complete history]
    Entry statusiReviewed (UniProtKB/Swiss-Prot)
    Annotation programChordata Protein Annotation Program

    Miscellaneousi

    Keywords - Technical termi

    3D-structure, Complete proteome, Reference proteome

    Documents

    1. MGD cross-references
      Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
    2. PDB cross-references
      Index of Protein Data Bank (PDB) cross-references
    3. SIMILARITY comments
      Index of protein domains and families

    External Data

    Dasty 3