Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Q9WTL8

- BMAL1_MOUSE

UniProt

Q9WTL8 - BMAL1_MOUSE

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Aryl hydrocarbon receptor nuclear translocator-like protein 1

Gene

Arntl

Organism
Mus musculus (Mouse)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. ARNTL/BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. May play a role in spermatogenesis; contributes to the chromatoid body assembly and physiology. The NPAS2-ARNTL/BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina.38 Publications

Enzyme regulationi

The redox state of the cell can modulate the transcriptional activity of the CLOCK-ARNTL/BMAL1 and NPAS2-ARNTL/BMAL1 heterodimers; NADH and NADPH enhance the DNA-binding activity of the heterodimers.By similarity

GO - Molecular functioni

  1. bHLH transcription factor binding Source: BHF-UCL
  2. core promoter binding Source: UniProtKB
  3. core promoter sequence-specific DNA binding Source: UniProtKB
  4. DNA binding Source: UniProtKB
  5. E-box binding Source: UniProtKB
  6. protein heterodimerization activity Source: BHF-UCL
  7. RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity Source: BHF-UCL
  8. RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription Source: BHF-UCL
  9. RNA polymerase II transcription factor binding transcription factor activity involved in positive regulation of transcription Source: BHF-UCL
  10. sequence-specific DNA binding Source: UniProtKB
  11. sequence-specific DNA binding transcription factor activity Source: MGI
  12. signal transducer activity Source: InterPro
  13. transcription factor binding Source: MGI
  14. transcription regulatory region sequence-specific DNA binding Source: UniProtKB

GO - Biological processi

  1. circadian regulation of gene expression Source: UniProtKB
  2. circadian rhythm Source: UniProtKB
  3. negative regulation of fat cell differentiation Source: UniProtKB
  4. negative regulation of glucocorticoid receptor signaling pathway Source: UniProtKB
  5. negative regulation of TOR signaling Source: UniProtKB
  6. negative regulation of transcription, DNA-templated Source: UniProtKB
  7. oxidative stress-induced premature senescence Source: UniProtKB
  8. positive regulation of canonical Wnt signaling pathway Source: UniProtKB
  9. positive regulation of circadian rhythm Source: UniProtKB
  10. positive regulation of skeletal muscle cell differentiation Source: UniProtKB
  11. positive regulation of transcription, DNA-templated Source: UniProtKB
  12. positive regulation of transcription from RNA polymerase II promoter Source: BHF-UCL
  13. proteasome-mediated ubiquitin-dependent protein catabolic process Source: UniProtKB
  14. protein import into nucleus, translocation Source: MGI
  15. regulation of cell cycle Source: UniProtKB
  16. regulation of cellular senescence Source: UniProtKB
  17. regulation of hair cycle Source: UniProtKB
  18. regulation of insulin secretion Source: UniProtKB
  19. regulation of neurogenesis Source: UniProtKB
  20. regulation of protein catabolic process Source: MGI
  21. regulation of transcription, DNA-templated Source: UniProtKB
  22. regulation of type B pancreatic cell development Source: UniProtKB
  23. response to redox state Source: UniProtKB
  24. spermatogenesis Source: UniProtKB
  25. transcription from RNA polymerase II promoter Source: GOC
Complete GO annotation...

Keywords - Molecular functioni

Activator

Keywords - Biological processi

Biological rhythms, Transcription, Transcription regulation

Keywords - Ligandi

DNA-binding

Enzyme and pathway databases

ReactomeiREACT_115781. Bmal1:Clock,Npas2 activates circadian gene expression.
REACT_118837. Rora activates circadian gene expression.
REACT_198351. RORA activates circadian gene expression.
REACT_198352. REV-ERBA represses gene expression.
REACT_198602. PPARA activates gene expression.
REACT_198620. BMAL1:CLOCK,NPAS2 activates circadian gene expression.
REACT_24972. Circadian Clock.

Names & Taxonomyi

Protein namesi
Recommended name:
Aryl hydrocarbon receptor nuclear translocator-like protein 1
Alternative name(s):
Arnt3
Brain and muscle ARNT-like 1
Gene namesi
Name:Arntl
Synonyms:Bmal1
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
ProteomesiUP000000589: Chromosome 7

Organism-specific databases

MGIiMGI:1096381. Arntl.

Subcellular locationi

Nucleus 1 Publication. Cytoplasm 1 Publication. NucleusPML body 1 Publication
Note: Shuttles between the nucleus and the cytoplasm and this nucleocytoplasmic shuttling is essential for the nuclear accumulation of CLOCK, target gene transcription and the degradation of the CLOCK-ARNTL/BMAL1 heterodimer. The sumoylated form localizes in the PML body. Sequestered to the cytoplasm in the presence of ID2.3 Publications

GO - Cellular componenti

  1. chromatoid body Source: UniProtKB
  2. cytoplasm Source: UniProtKB
  3. cytosol Source: Reactome
  4. nuclear body Source: MGI
  5. nucleoplasm Source: Reactome
  6. nucleus Source: UniProtKB
  7. transcription factor complex Source: UniProtKB
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Nucleus

Pathology & Biotechi

Disruption phenotypei

Mice are characterized by reduced lifespan, and the presence of a number of pathologies characteristic of pre-mature aging and increased oxidative stress. They show impaired functional connectivity, increased oxidative damage and severe astrogliosis in the brain. They also exhibit accelerated thrombosis with elevated levels of thrombogenic factors, including VWF, SERPINE1/PAI1, and fibrinogen. Both male and female mice are infertile and male mice have low testosterone and high luteinizing hormone serum levels and a significant decrease in sperm count.4 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi38 – 392KR → AA: Loss of nuclear localization. 1 Publication
Mutagenesisi97 – 971S → A: Impaired nuclear accumulation, decreased interaction with CLOCK and disruption of circadain clock function. 1 Publication
Mutagenesisi102 – 1021L → E: Reduced CLOCK binding. Abolishes transcriptional activation by the CLOCK-ARNTL/BMAL1 heterodimer. 1 Publication
Mutagenesisi122 – 1221L → E: Reduced CLOCK binding. Abolishes transcriptional activation by the CLOCK-ARNTL/BMAL1 heterodimer. 1 Publication
Mutagenesisi154 – 1541L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-157. 1 Publication
Mutagenesisi157 – 1571L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-154. 1 Publication
Mutagenesisi230 – 2301K → R: No effect on sumoylation. 1 Publication
Mutagenesisi236 – 2361K → R: No effect on sumoylation. 1 Publication
Mutagenesisi259 – 2591K → R: Significant decrease in; transcriptional activity, localization in PML body, ubiquitination and proteasome-mediated proteolysis. 1 Publication
Mutagenesisi266 – 2661K → R: Abolishes sumoylation. 1 Publication
Mutagenesisi279 – 2791K → R: No effect on sumoylation. 1 Publication
Mutagenesisi323 – 3231I → D: Reduced CLOCK binding. Slightly reduced transcriptional activation by the CLOCK-ARNTL/BMAL1 heterodimer. Impairs regulation of circadian clock. 1 Publication
Mutagenesisi370 – 3701L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-374. 1 Publication
Mutagenesisi374 – 3741L → A: Significant reduction in nucleocytoplasmic shuttling; when associated with A-370. 1 Publication
Mutagenesisi418 – 4181S → A: Decreases without abolishing O-GlcNAcylation. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 632632Aryl hydrocarbon receptor nuclear translocator-like protein 1PRO_0000127158Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei17 – 171Phosphoserine; by GSK3-beta1 Publication
Modified residuei21 – 211Phosphothreonine; by GSK3-beta1 Publication
Modified residuei97 – 971Phosphoserine; by CK21 Publication
Cross-linki259 – 259Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO2 and SUMO3)1 Publication
Cross-linki266 – 266Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO)1 Publication
Modified residuei544 – 5441N6-acetyllysine1 Publication

Post-translational modificationi

Ubiquitinated, leading to its proteasomal degradation.2 Publications
O-glycosylated; contains O-GlcNAc. O-glycosylation by OGT prevents protein degradation by inhibiting ubiquitination. It also stabilizes the CLOCK-ARNTL/BMAL1 heterodimer thereby increasing CLOCK-ARNTL/BMAL1-mediated transcription of genes in the negative loop of the circadian clock such as PER1/2/3 and CRY1/2.2 Publications
Acetylated on Lys-544 upon dimerization with CLOCK. Acetylation facilitates CRY1-mediated repression. Deacetylated by SIRT1, which may result in decreased protein stabilty.2 Publications
Phosphorylated upon dimerization with CLOCK. Phosphorylation enhances the transcriptional activity, alters the subcellular localization and decreases the stability of the CLOCK-ARNTL/BMAL1 heterodimer by promoting its degradation. Phosphorylation shows circadian variations in the liver with a peak between CT10 to CT14. Phosphorylation at Ser-97 by CK2 is essential for its nuclear localization, its interaction with CLOCK and controls CLOCK nuclear entry.6 Publications
Sumoylated on Lys-266 upon dimerization with CLOCK. Predominantly conjugated to poly-SUMO2/3 rather than SUMO1 and the level of these conjugates undergo rhythmic variation, peaking at CT9-CT12. Sumoylation localizes it exclusively to the PML body and promotes its ubiquitination in the PML body, ubiquitin-dependent proteasomal degradation and the transcriptional activity of the CLOCK-ARNTL/BMAL1 heterodimer.2 Publications

Keywords - PTMi

Acetylation, Glycoprotein, Isopeptide bond, Phosphoprotein, Ubl conjugation

Proteomic databases

MaxQBiQ9WTL8.
PaxDbiQ9WTL8.
PRIDEiQ9WTL8.

PTM databases

PhosphoSiteiQ9WTL8.

Expressioni

Tissue specificityi

Expressed in liver and testis (at protein level).5 Publications

Inductioni

Expressed in a circadian manner in the liver.4 Publications

Gene expression databases

BgeeiQ9WTL8.
ExpressionAtlasiQ9WTL8. baseline and differential.
GenevestigatoriQ9WTL8.

Interactioni

Subunit structurei

Component of the circadian clock oscillator which includes the CRY1/2 proteins, CLOCK or NPAS2, ARNTL/BMAL1 or ARNTL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS and the PER1/2/3 proteins. Efficient DNA binding requires dimerization with another bHLH protein. Heterodimerization with CLOCK is required for E-box-dependent transactivation, for CLOCK nuclear translocation and degradation, and, for phosphorylation of both CLOCK and ARNTL/BMAL1. Part of a nuclear complex which also includes GNB2L1/RACK1 and PRKCA; GNB2L1 and PRKCA are recruited to the complex in a circadian manner. Interacts with NPAS2, HSP90, AHR, CIART, DDX4, SUMO3, OGT, EED, EZH2, SUZ12, KAT2B, EP300, BHLHE40/DEC1, BHLHE41/DEC2, ID1, ID2, ID3, MTA1 and SIRT1. Interacts with RELB and the interaction is enhanced in the presence of CLOCK. Interacts with PER1, PER2, CRY1 and CRY2 and this interaction requires a translocation to the nucleus. Interaction of the CLOCK-ARNTL/BMAL1 heterodimer with PER or CRY inhibits transcription activation. Interaction of the CLOCK-ARNTL/BMAL1 with CRY1 is independent of DNA but with PER2 is off DNA. The CLOCK-ARNTL/BMAL1 heterodimer interacts with GSK3B. Interacts with KDM5A.29 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
ClockO0878524EBI-644534,EBI-79859
Cry1P9778412EBI-644534,EBI-1266607
Cry2Q99JJ14EBI-644534,EBI-1794634
Cry2Q9R1946EBI-644534,EBI-1266619
Parp1P111037EBI-644534,EBI-642213
Per2O549438EBI-644534,EBI-1266779
Ppp1caP621372EBI-644534,EBI-357187
RORCP514492EBI-644534,EBI-3908771From a different organism.
WDR5P619642EBI-644534,EBI-540834From a different organism.

Protein-protein interaction databases

BioGridi198207. 16 interactions.
DIPiDIP-43977N.
IntActiQ9WTL8. 20 interactions.
MINTiMINT-1657344.

Structurei

Secondary structure

1
632
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Helixi79 – 10527
Helixi107 – 1115
Helixi118 – 13316
Helixi151 – 16010
Beta strandi164 – 1707
Turni171 – 1733
Beta strandi175 – 1795
Helixi183 – 1875
Helixi191 – 1944
Helixi199 – 2024
Helixi205 – 2073
Helixi208 – 2158
Helixi248 – 2503
Beta strandi251 – 2599
Beta strandi284 – 29512
Beta strandi319 – 3268
Beta strandi337 – 3393
Beta strandi345 – 3506
Beta strandi354 – 3596
Helixi362 – 3676
Helixi371 – 3744
Helixi379 – 3813
Helixi385 – 39814
Beta strandi410 – 4134
Beta strandi419 – 43113
Turni432 – 4354
Beta strandi436 – 44611

3D structure databases

Select the link destinations:
PDBe
RCSB PDB
PDBj
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
4F3LX-ray2.27B69-453[»]
DisProtiDP00735.
ProteinModelPortaliQ9WTL8.
SMRiQ9WTL8. Positions 76-448.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini79 – 13254bHLHPROSITE-ProRule annotationAdd
BLAST
Domaini150 – 22273PAS 1PROSITE-ProRule annotationAdd
BLAST
Domaini333 – 40371PAS 2PROSITE-ProRule annotationAdd
BLAST
Domaini408 – 45144PACAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni514 – 59481Interaction with CIARTAdd
BLAST

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi36 – 416Nuclear localization signal1 Publication
Motifi149 – 15911Nuclear export signal 11 PublicationAdd
BLAST
Motifi367 – 3759Nuclear export signal 21 Publication

Sequence similaritiesi

Contains 1 bHLH (basic helix-loop-helix) domain.PROSITE-ProRule annotation
Contains 2 PAS (PER-ARNT-SIM) domains.PROSITE-ProRule annotation

Keywords - Domaini

Repeat

Phylogenomic databases

eggNOGiNOG293303.
GeneTreeiENSGT00760000118788.
HOGENOMiHOG000234379.
HOVERGENiHBG107503.
InParanoidiQ9WTL8.
KOiK02296.
OMAiEKINTNC.
OrthoDBiEOG7V1FQ8.
PhylomeDBiQ9WTL8.
TreeFamiTF319983.

Family and domain databases

Gene3Di4.10.280.10. 1 hit.
InterProiIPR011598. bHLH_dom.
IPR001067. Nuc_translocat.
IPR001610. PAC.
IPR000014. PAS.
IPR013767. PAS_fold.
[Graphical view]
PfamiPF00010. HLH. 1 hit.
PF00989. PAS. 1 hit.
[Graphical view]
PRINTSiPR00785. NCTRNSLOCATR.
SMARTiSM00353. HLH. 1 hit.
SM00086. PAC. 1 hit.
SM00091. PAS. 2 hits.
[Graphical view]
SUPFAMiSSF47459. SSF47459. 1 hit.
SSF55785. SSF55785. 3 hits.
TIGRFAMsiTIGR00229. sensory_box. 1 hit.
PROSITEiPS50888. BHLH. 1 hit.
PS50112. PAS. 2 hits.
[Graphical view]

Sequences (5)i

Sequence statusi: Complete.

This entry describes 5 isoformsi produced by alternative splicing. Align

Isoform 1 (identifier: Q9WTL8-1) [UniParc]FASTAAdd to Basket

Also known as: b'

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MADQRMDISS TISDFMSPGP TDLLSGSLGT SGVDCNRKRK GSATDYQLDD
60 70 80 90 100
FAFEESMDTD KDDPHGRLEY AEHQGRIKNA REAHSQIEKR RRDKMNSFID
110 120 130 140 150
ELASLVPTCN AMSRKLDKLT VLRMAVQHMK TLRGATNPYT EANYKPTFLS
160 170 180 190 200
DDELKHLILR AADGFLFVVG CDRGKILFVS ESVFKILNYS QNDLIGQSLF
210 220 230 240 250
DYLHPKDIAK VKEQLSSSDT APRERLIDAK TGLPVKTDIT PGPSRLCSGA
260 270 280 290 300
RRSFFCRMKC NRPSVKVEDK DFASTCSKKK DRKSFCTIHS TGYLKSWPPT
310 320 330 340 350
KMGLDEDNEP DNEGCNLSCL VAIGRLHSHM VPQPANGEIR VKSMEYVSRH
360 370 380 390 400
AIDGKFVFVD QRATAILAYL PQELLGTSCY EYFHQDDIGH LAECHRQVLQ
410 420 430 440 450
TREKITTNCY KFKIKDGSFI TLRSRWFSFM NPWTKEVEYI VSTNTVVLAN
460 470 480 490 500
VLEGGDPTFP QLTAPPHSMD SMLPSGEGGP KRTHPTVPGI PGGTRAGAGK
510 520 530 540 550
IGRMIAEEIM EIHRIRGSSP SSCGSSPLNI TSTPPPDASS PGGKKILNGG
560 570 580 590 600
TPDIPSTGLL PGQAQETPGY PYSDSSSILG ENPHIGIDMI DNDQGSSSPS
610 620 630
NDEAAMAVIM SLLEADAGLG GPVDFSDLPW PL
Length:632
Mass (Da):69,452
Last modified:August 15, 2003 - v2
Checksum:i9669C3712A95C2DE
GO
Isoform 2 (identifier: Q9WTL8-2) [UniParc]FASTAAdd to Basket

Also known as: b

The sequence of this isoform differs from the canonical sequence as follows:
     48-54: Missing.

Show »
Length:625
Mass (Da):68,614
Checksum:i5A99555F851260CF
GO
Isoform 3 (identifier: Q9WTL8-3) [UniParc]FASTAAdd to Basket

The sequence of this isoform differs from the canonical sequence as follows:
     49-68: Missing.
     280-280: K → KA

Show »
Length:613
Mass (Da):67,200
Checksum:i24B91BA2E81D1A25
GO
Isoform 4 (identifier: Q9WTL8-4) [UniParc]FASTAAdd to Basket

The sequence of this isoform differs from the canonical sequence as follows:
     48-54: Missing.
     280-280: K → KA

Show »
Length:626
Mass (Da):68,685
Checksum:i837330EF65406CE4
GO
Isoform 5 (identifier: Q9WTL8-5) [UniParc]FASTAAdd to Basket

Also known as: g'

The sequence of this isoform differs from the canonical sequence as follows:
     48-54: Missing.
     161-483: AADGFLFVVG...PSGEGGPKRT → DVTEGRSSLS...PRLDFRLKRI
     484-632: Missing.

Show »
Length:222
Mass (Da):25,061
Checksum:i9AE175BE7F6A446C
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti254 – 2541F → L in BAA76414. (PubMed:10403839)Curated
Sequence conflicti254 – 2541F → L in BAA81898. (PubMed:10403839)Curated

Alternative sequence

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Alternative sequencei48 – 547Missing in isoform 2, isoform 4 and isoform 5. 3 PublicationsVSP_007992
Alternative sequencei49 – 6820Missing in isoform 3. 1 PublicationVSP_007993Add
BLAST
Alternative sequencei161 – 483323AADGF…GPKRT → DVTEGRSSLSPSLSSRSSII ARMTLLARACLTTCIQKILP KLRNSYLPRTLRPGSDSLMP RLDFRLKRI in isoform 5. 1 PublicationVSP_007995Add
BLAST
Alternative sequencei280 – 2801K → KA in isoform 3 and isoform 4. 2 PublicationsVSP_007994
Alternative sequencei484 – 632149Missing in isoform 5. 1 PublicationVSP_007996Add
BLAST

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
AB012601 mRNA. Translation: BAA76414.1.
AB015203 mRNA. Translation: BAA81898.1.
AB012602 mRNA. Translation: BAA76415.1.
AB014494 mRNA. Translation: BAA32208.1.
BC025973 mRNA. Translation: AAH25973.1.
BC011080 mRNA. Translation: AAH11080.1.
CCDSiCCDS40092.1. [Q9WTL8-4]
PIRiJE0270.
RefSeqiNP_001229977.1. NM_001243048.1. [Q9WTL8-3]
NP_031515.1. NM_007489.4. [Q9WTL8-4]
XP_006507314.1. XM_006507251.1. [Q9WTL8-1]
UniGeneiMm.440371.

Genome annotation databases

EnsembliENSMUST00000047321; ENSMUSP00000046235; ENSMUSG00000055116. [Q9WTL8-4]
GeneIDi11865.
KEGGimmu:11865.
UCSCiuc009jhf.2. mouse. [Q9WTL8-3]
uc009jhi.2. mouse. [Q9WTL8-2]
uc009jhj.2. mouse. [Q9WTL8-1]

Keywords - Coding sequence diversityi

Alternative splicing

Cross-referencesi

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
AB012601 mRNA. Translation: BAA76414.1 .
AB015203 mRNA. Translation: BAA81898.1 .
AB012602 mRNA. Translation: BAA76415.1 .
AB014494 mRNA. Translation: BAA32208.1 .
BC025973 mRNA. Translation: AAH25973.1 .
BC011080 mRNA. Translation: AAH11080.1 .
CCDSi CCDS40092.1. [Q9WTL8-4 ]
PIRi JE0270.
RefSeqi NP_001229977.1. NM_001243048.1. [Q9WTL8-3 ]
NP_031515.1. NM_007489.4. [Q9WTL8-4 ]
XP_006507314.1. XM_006507251.1. [Q9WTL8-1 ]
UniGenei Mm.440371.

3D structure databases

Select the link destinations:
PDBe
RCSB PDB
PDBj
Links Updated
Entry Method Resolution (Å) Chain Positions PDBsum
4F3L X-ray 2.27 B 69-453 [» ]
DisProti DP00735.
ProteinModelPortali Q9WTL8.
SMRi Q9WTL8. Positions 76-448.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

BioGridi 198207. 16 interactions.
DIPi DIP-43977N.
IntActi Q9WTL8. 20 interactions.
MINTi MINT-1657344.

PTM databases

PhosphoSitei Q9WTL8.

Proteomic databases

MaxQBi Q9WTL8.
PaxDbi Q9WTL8.
PRIDEi Q9WTL8.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Genome annotation databases

Ensembli ENSMUST00000047321 ; ENSMUSP00000046235 ; ENSMUSG00000055116 . [Q9WTL8-4 ]
GeneIDi 11865.
KEGGi mmu:11865.
UCSCi uc009jhf.2. mouse. [Q9WTL8-3 ]
uc009jhi.2. mouse. [Q9WTL8-2 ]
uc009jhj.2. mouse. [Q9WTL8-1 ]

Organism-specific databases

CTDi 406.
MGIi MGI:1096381. Arntl.

Phylogenomic databases

eggNOGi NOG293303.
GeneTreei ENSGT00760000118788.
HOGENOMi HOG000234379.
HOVERGENi HBG107503.
InParanoidi Q9WTL8.
KOi K02296.
OMAi EKINTNC.
OrthoDBi EOG7V1FQ8.
PhylomeDBi Q9WTL8.
TreeFami TF319983.

Enzyme and pathway databases

Reactomei REACT_115781. Bmal1:Clock,Npas2 activates circadian gene expression.
REACT_118837. Rora activates circadian gene expression.
REACT_198351. RORA activates circadian gene expression.
REACT_198352. REV-ERBA represses gene expression.
REACT_198602. PPARA activates gene expression.
REACT_198620. BMAL1:CLOCK,NPAS2 activates circadian gene expression.
REACT_24972. Circadian Clock.

Miscellaneous databases

NextBioi 279875.
PROi Q9WTL8.
SOURCEi Search...

Gene expression databases

Bgeei Q9WTL8.
ExpressionAtlasi Q9WTL8. baseline and differential.
Genevestigatori Q9WTL8.

Family and domain databases

Gene3Di 4.10.280.10. 1 hit.
InterProi IPR011598. bHLH_dom.
IPR001067. Nuc_translocat.
IPR001610. PAC.
IPR000014. PAS.
IPR013767. PAS_fold.
[Graphical view ]
Pfami PF00010. HLH. 1 hit.
PF00989. PAS. 1 hit.
[Graphical view ]
PRINTSi PR00785. NCTRNSLOCATR.
SMARTi SM00353. HLH. 1 hit.
SM00086. PAC. 1 hit.
SM00091. PAS. 2 hits.
[Graphical view ]
SUPFAMi SSF47459. SSF47459. 1 hit.
SSF55785. SSF55785. 3 hits.
TIGRFAMsi TIGR00229. sensory_box. 1 hit.
PROSITEi PS50888. BHLH. 1 hit.
PS50112. PAS. 2 hits.
[Graphical view ]
ProtoNeti Search...

Publicationsi

« Hide 'large scale' publications
  1. "Characterization of three splice variants and genomic organization of the mouse BMAL1 gene."
    Yu W., Ikeda M., Abe H., Honma S., Ebisawa T., Yamauchi T., Honma K., Nomura M.
    Biochem. Biophys. Res. Commun. 260:760-767(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1; 2 AND 5).
    Tissue: Brain.
  2. "Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock."
    Takahata S., Sogawa K., Kobayashi A., Ema M., Mimura J., Ozaki N., Fujii-Kuriyama Y.
    Biochem. Biophys. Res. Commun. 248:789-794(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 4).
  3. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 3 AND 4).
  4. Cited for: INTERACTION WITH CLOCK.
  5. "Posttranslational mechanisms regulate the mammalian circadian clock."
    Lee C., Etchegaray J.-P., Cagampang F.R.A., Loudon A.S.I., Reppert S.M.
    Cell 107:855-867(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: IDENTIFICATION IN A COMPLEX WITH CLOCK; PER1; PER2; CRY1; CRY2; CSNK1D AND CSNK1E, PHOSPHORYLATION, SUBCELLULAR LOCATION.
  6. "Dec1 and Dec2 are regulators of the mammalian molecular clock."
    Honma S., Kawamoto T., Takagi Y., Fujimoto K., Sato F., Noshiro M., Kato Y., Honma K.I.
    Nature 419:841-844(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH BHLHE40 AND BHLHE41.
  7. "BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system."
    Kondratov R.V., Chernov M.V., Kondratova A.A., Gorbacheva V.Y., Gudkov A.V., Antoch M.P.
    Genes Dev. 17:1921-1932(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION, SUBCELLULAR LOCATION.
  8. Cited for: FUNCTION.
  9. Cited for: SUMOYLATION AT LYS-266, MUTAGENESIS OF LYS-230; LYS-236; LYS-266 AND LYS-279.
  10. "Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES."
    Kondratov R.V., Kondratova A.A., Lee C., Gorbacheva V.Y., Chernov M.V., Antoch M.P.
    Cell Cycle 5:890-895(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH NPAS2.
  11. "The polycomb group protein EZH2 is required for mammalian circadian clock function."
    Etchegaray J.P., Yang X., DeBruyne J.P., Peters A.H., Weaver D.R., Jenuwein T., Reppert S.M.
    J. Biol. Chem. 281:21209-21215(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH EZH2; CLOCK; PER1; PER2; CRY1 AND CRY2.
  12. "BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer."
    Kwon I., Lee J., Chang S.H., Jung N.C., Lee B.J., Son G.H., Kim K., Lee K.H.
    Mol. Cell. Biol. 26:7318-7330(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, NUCLEAR LOCALIZATION SIGNAL, NUCLEAR EXPORT SIGNAL, INTERACTION WITH CLOCK, MUTAGENESIS OF 38-LYS-ARG-39; LEU-154; LEU-157; LEU-370 AND LEU-374, UBIQUITINATION, PROTEASOMAL DEGRADATION.
  13. "Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5."
    Partch C.L., Shields K.F., Thompson C.L., Selby C.P., Sancar A.
    Proc. Natl. Acad. Sci. U.S.A. 103:10467-10472(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY, INDUCTION.
  14. "CLOCK-mediated acetylation of BMAL1 controls circadian function."
    Hirayama J., Sahar S., Grimaldi B., Tamaru T., Takamatsu K., Nakahata Y., Sassone-Corsi P.
    Nature 450:1086-1090(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACETYLATION AT LYS-544.
  15. "Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK."
    Langmesser S., Tallone T., Bordon A., Rusconi S., Albrecht U.
    BMC Mol. Biol. 9:41-41(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH CRY1; CRY2 AND PER2.
  16. "SIRT1 regulates circadian clock gene expression through PER2 deacetylation."
    Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., Schibler U.
    Cell 134:317-328(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH SIRT1 AND CLOCK.
  17. "The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control."
    Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., Guarente L.P., Sassone-Corsi P.
    Cell 134:329-340(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACETYLATION AT LYS-544, DEACETYLATION, INTERACTION WITH SIRT1.
  18. "The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice."
    Alvarez J.D., Hansen A., Ord T., Bebas P., Chappell P.E., Giebultowicz J.M., Williams C., Moss S., Sehgal A.
    J. Biol. Rhythms 23:26-36(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  19. "Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators."
    Bertolucci C., Cavallari N., Colognesi I., Aguzzi J., Chen Z., Caruso P., Foa A., Tosini G., Bernardi F., Pinotti M.
    Mol. Cell. Biol. 28:3070-3075(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  20. "Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex."
    Lee J., Lee Y., Lee M.J., Park E., Kang S.H., Chung C.H., Lee K.H., Kim K.
    Mol. Cell. Biol. 28:6056-6065(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUMOYLATION AT LYS-259, SUBCELLULAR LOCATION, INTERACTION WITH SUMO3, MUTAGENESIS OF LYS-259, UBIQUITINATION, PROTEASOMAL DEGRADATION.
  21. "A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation."
    Spengler M.L., Kuropatwinski K.K., Schumer M., Antoch M.P.
    Cell Cycle 8:4138-4146(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH GSK3B AND CLOCK, PHOSPHORYLATION.
  22. "Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications."
    Nader N., Chrousos G.P., Kino T.
    FASEB J. 23:1572-1583(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  23. "Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription."
    Sasaki M., Yoshitane H., Du N.H., Okano T., Fukada Y.
    J. Biol. Chem. 284:25149-25159(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH PER2.
  24. "Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription."
    Yoshitane H., Takao T., Satomi Y., Du N.H., Okano T., Fukada Y.
    Mol. Cell. Biol. 29:3675-3686(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION.
  25. Cited for: PHOSPHORYLATION AT SER-97, SUBCELLULAR LOCATION, MUTAGENESIS OF SER-97, INTERACTION WITH CLOCK.
  26. Cited for: FUNCTION, INTERACTION WITH SIRT1.
  27. "Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1."
    Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P.
    Science 324:654-657(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  28. "Identification of two amino acids in the C-terminal domain of mouse CRY2 essential for PER2 interaction."
    Ozber N., Baris I., Tatlici G., Gur I., Kilinc S., Unal E.B., Kavakli I.H.
    BMC Mol. Biol. 11:69-69(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH CRY2.
  29. "Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2."
    Shi S., Hida A., McGuinness O.P., Wasserman D.H., Yamazaki S., Johnson C.H.
    Curr. Biol. 20:316-321(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  30. "CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2."
    Doi R., Oishi K., Ishida N.
    J. Biol. Chem. 285:22114-22121(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  31. "The transcriptional repressor ID2 can interact with the canonical clock components CLOCK and BMAL1 and mediate inhibitory effects on mPer1 expression."
    Ward S.M., Fernando S.J., Hou T.Y., Duffield G.E.
    J. Biol. Chem. 285:38987-39000(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, INTERACTION WITH ID1; ID2 AND ID3.
  32. Cited for: FUNCTION, INDUCTION.
  33. Cited for: FUNCTION.
  34. "Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation."
    Sahar S., Zocchi L., Kinoshita C., Borrelli E., Sassone-Corsi P.
    PLoS ONE 5:E8561-E8561(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-17 AND THR-21, INTERACTION WITH GSK3B.
  35. Cited for: FUNCTION.
  36. "Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock."
    Robles M.S., Boyault C., Knutti D., Padmanabhan K., Weitz C.J.
    Science 327:463-466(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH GNB2L1 AND PRKCA, SUBCELLULAR LOCATION, IDENTIFICATION BY MASS SPECTROMETRY.
  37. "Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene."
    Xu C.X., Krager S.L., Liao D.F., Tischkau S.A.
    Toxicol. Sci. 115:98-108(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH AHR.
  38. "Circadian clock protein BMAL1 regulates cellular senescence in vivo."
    Khapre R.V., Kondratova A.A., Susova O., Kondratov R.V.
    Cell Cycle 10:4162-4169(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  39. "Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated insulin secretion in beta-cells."
    Lee J., Kim M.S., Li R., Liu V.Y., Fu L., Moore D.D., Ma K., Yechoor V.K.
    Islets 3:381-388(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  40. "Biochemical analysis of the canonical model for the mammalian circadian clock."
    Ye R., Selby C.P., Ozturk N., Annayev Y., Sancar A.
    J. Biol. Chem. 286:25891-25902(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH CLOCK; CRY1 AND PER2.
  41. "cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene."
    Koyanagi S., Hamdan A.M., Horiguchi M., Kusunose N., Okamoto A., Matsunaga N., Ohdo S.
    J. Biol. Chem. 286:32416-32423(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  42. "Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phenotype."
    Somanath P.R., Podrez E.A., Chen J., Ma Y., Marchant K., Antoch M., Byzova T.V.
    J. Cell. Physiol. 226:132-140(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  43. "Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation."
    Shimba S., Ogawa T., Hitosugi S., Ichihashi Y., Nakadaira Y., Kobayashi M., Tezuka M., Kosuge Y., Ishige K., Ito Y., Komiyama K., Okamatsu-Ogura Y., Kimura K., Saito M.
    PLoS ONE 6:E25231-E25231(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  44. "Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock."
    DiTacchio L., Le H.D., Vollmers C., Hatori M., Witcher M., Secombe J., Panda S.
    Science 333:1881-1885(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH KDM5A.
  45. "The RelB subunit of NFkappaB acts as a negative regulator of circadian gene expression."
    Bellet M.M., Zocchi L., Sassone-Corsi P.
    Cell Cycle 11:3304-3311(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH RELB.
  46. "The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway."
    Guo B., Chatterjee S., Li L., Kim J.M., Lee J., Yechoor V.K., Minze L.J., Hsueh W., Ma K.
    FASEB J. 26:3453-3463(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  47. "Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome."
    Stratmann M., Suter D.M., Molina N., Naef F., Schibler U.
    Mol. Cell 48:277-287(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  48. "Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells."
    Peruquetti R.L., de Mateo S., Sassone-Corsi P.
    PLoS ONE 7:E42695-E42695(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, INTERACTION WITH DDX4.
  49. "A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention."
    Richards J., Cheng K.Y., All S., Skopis G., Jeffers L., Lynch I.J., Wingo C.S., Gumz M.L.
    Am. J. Physiol. 305:F1697-F1704(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PER1, TISSUE SPECIFICITY.
  50. "High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice."
    Barclay J.L., Shostak A., Leliavski A., Tsang A.H., Johren O., Muller-Fielitz H., Landgraf D., Naujokat N., van der Horst G.T., Oster H.
    Am. J. Physiol. 304:E1053-E1063(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY, INDUCTION.
  51. "Mechanism of the circadian clock in physiology."
    Richards J., Gumz M.L.
    Am. J. Physiol. 304:R1053-R1064(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  52. "The clock gene brain and muscle Arnt-like protein-1 (BMAL1) is involved in hair growth."
    Watabe Y., Tomioka M., Watabe A., Aihara M., Shimba S., Inoue H.
    Arch. Dermatol. Res. 305:755-761(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  53. "The molecular clock regulates circadian transcription of tissue factor gene."
    Oishi K., Koyanagi S., Ohkura N.
    Biochem. Biophys. Res. Commun. 431:332-335(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  54. "O-GlcNAcylation of BMAL1 regulates circadian rhythms in NIH3T3 fibroblasts."
    Ma Y.T., Luo H., Guan W.J., Zhang H., Chen C., Wang Z., Li J.D.
    Biochem. Biophys. Res. Commun. 431:382-387(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: GLYCOSYLATION, INTERACTION WITH OGT.
  55. "Effects of NAD(P)H and its derivatives on the DNA-binding activity of NPAS2, a mammalian circadian transcription factor."
    Yoshii K., Ishijima S., Sagami I.
    Biochem. Biophys. Res. Commun. 437:386-391(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: DNA-BINDING.
  56. "O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination."
    Li M.D., Ruan H.B., Hughes M.E., Lee J.S., Singh J.P., Jones S.P., Nitabach M.N., Yang X.
    Cell Metab. 17:303-310(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: GLYCOSYLATION, UBIQUITINATION, MUTAGENESIS OF SER-418.
  57. "The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit."
    Bouchard-Cannon P., Mendoza-Viveros L., Yuen A., Kaern M., Cheng H.Y.
    Cell Rep. 5:961-973(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  58. Cited for: FUNCTION.
  59. Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  60. "Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells."
    Hwang C.K., Chaurasia S.S., Jackson C.R., Chan G.C., Storm D.R., Iuvone P.M.
    J. Neurosci. 33:14989-14997(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  61. "Bmal1 and beta-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced beta-cell failure in mice."
    Lee J., Moulik M., Fang Z., Saha P., Zou F., Xu Y., Nelson D.L., Ma K., Moore D.D., Yechoor V.K.
    Mol. Cell. Biol. 33:2327-2338(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  62. "Metastasis-associated protein 1 is an integral component of the circadian molecular machinery."
    Li D.Q., Pakala S.B., Reddy S.D., Peng S., Balasenthil S., Deng C.X., Lee C.C., Rea M.A., Kumar R.
    Nat. Commun. 4:2545-2545(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH MTA1.
  63. "Global loss of Bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism."
    Kennaway D.J., Varcoe T.J., Voultsios A., Boden M.J.
    PLoS ONE 8:E65255-E65255(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  64. "Metabolism and the circadian clock converge."
    Eckel-Mahan K., Sassone-Corsi P.
    Physiol. Rev. 93:107-135(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  65. "Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes."
    Nguyen K.D., Fentress S.J., Qiu Y., Yun K., Cox J.S., Chawla A.
    Science 341:1483-1488(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH CLOCK; EED; EZH2 AND SUZ12.
  66. "BMAL1-dependent regulation of the mTOR signaling pathway delays aging."
    Khapre R.V., Kondratova A.A., Patel S., Dubrovsky Y., Wrobel M., Antoch M.P., Kondratov R.V.
    Aging (Albany NY) 6:48-57(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  67. "Presence of multiple peripheral circadian oscillators in the tissues controlling voiding function in mice."
    Noh J.Y., Han D.H., Kim M.H., Ko I.G., Kim S.E., Park N., Kyoung Choe H., Kim K.H., Kim K., Kim C.J., Cho S.
    Exp. Mol. Med. 46:E81-E81(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION, TISSUE SPECIFICITY.
  68. "CLOCK:BMAL1 is a pioneer-like transcription factor."
    Menet J.S., Pescatore S., Rosbash M.
    Genes Dev. 28:8-13(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  69. "CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity via SIRT1."
    Zhou B., Zhang Y., Zhang F., Xia Y., Liu J., Huang R., Wang Y., Hu Y., Wu J., Dai C., Wang H., Tu Y., Peng X., Wang Y., Zhai Q.
    Hepatology 59:2196-2206(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  70. "Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression."
    Annayev Y., Adar S., Chiou Y.Y., Lieb J., Sancar A., Ye R.
    J. Biol. Chem. 289:5013-5024(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH CIART.
  71. "Modulation of glucocorticoid receptor induction properties by core circadian clock proteins."
    Han D.H., Lee Y.J., Kim K., Kim C.J., Cho S.
    Mol. Cell. Endocrinol. 383:170-180(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN GR REPRESSION.
  72. Cited for: FUNCTION, INTERACTION WITH CIART.
  73. "Molecular architecture of the mammalian circadian clock."
    Partch C.L., Green C.B., Takahashi J.S.
    Trends Cell Biol. 24:90-99(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: REVIEW.
  74. "Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex."
    Huang N., Chelliah Y., Shan Y., Taylor C.A., Yoo S.H., Partch C., Green C.B., Zhang H., Takahashi J.S.
    Science 337:189-194(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.27 ANGSTROMS) OF 69-453 IN COMPLEX WITH CLOCK, FUNCTION, INTERACTION WITH CLOCK, MUTAGENESIS OF LEU-102; LEU-122 AND ILE-323.

Entry informationi

Entry nameiBMAL1_MOUSE
AccessioniPrimary (citable) accession number: Q9WTL8
Secondary accession number(s): O88295
, Q921S4, Q9R0U2, Q9WTL9
Entry historyi
Integrated into UniProtKB/Swiss-Prot: August 15, 2003
Last sequence update: August 15, 2003
Last modified: October 29, 2014
This is version 134 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3