Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q9VV74 (SMN_DROME) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 120. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Survival motor neuron protein
Gene names
Name:Smn
ORF Names:CG16725
OrganismDrosophila melanogaster (Fruit fly) [Reference proteome]
Taxonomic identifier7227 [NCBI]
Taxonomic lineageEukaryotaMetazoaEcdysozoaArthropodaHexapodaInsectaPterygotaNeopteraEndopterygotaDipteraBrachyceraMuscomorphaEphydroideaDrosophilidaeDrosophilaSophophora

Protein attributes

Sequence length226 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

The SMN complex plays an essential role in spliceosomal snRNP assembly in the cytoplasm, is required for pre-mRNA splicing in the nucleus and acts as a chaperone that discriminates target and non-target RNAs of Sm proteins. Required for normal expression of spliceosomal snRNAs and for U12 intron splicing. Required in cholinergic neurons, but not in motor neurons, to ensure correct splicing and proper levels of stas mRNA and normal neurotransmitter release by motor neurons (Ref.18 and Ref.19). However, Smn is required in motor neurons, but not in cholinergic neurons, for normal motor behavior but plays no role in synaptic transmission according to Ref.17. In both muscle and neurons, required for the formation of a normal neuromuscular junction (NMJ) structure. Plays a neuron-specific role in long-term homeostatic compensation at the larval NMJ. In the thorax of adult flies, required for Act88F, an indirect flight muscle (IFM)-specific actin, expression and for proper IFM myofibril formation. In nurse cells, oocytes and follicle cells, required to maintain normal organization of nuclear compartments including chromosomes, nucleoli, Cajal bodies, histone locus bodies and heterochromatin. Required for the functional integrity of the cytoplasmic U snRNP body (U body) and P body. Required in dividing postembryonic neuroblasts (pNBs) for the correct basal localization of mira. The tight regulation of its expression is critical for stem cell division, proliferation and differentiation in male germline and developing central nervous system (CNS). Required for tracheal terminal cell lumen formation. Ref.5 Ref.9 Ref.11 Ref.12 Ref.14 Ref.16 Ref.17 Ref.18 Ref.19 Ref.20 Ref.21 Ref.23

Subunit structure

Homodimer (via C-terminal region). Part of the core SMN complex, which seems to be composed of Smn and Gem2 only. The SMN complex associates with the entire set of spliceosomal snRNP Sm proteins, SmB, SmD1, SmD2, SmD3, SmE, SmF and SmG, and with the snRNP-specific proteins snRNP-U1-70K, U2A, snf/U1A and U5-116KD. Associates weakly with Gem3. Interacts with SmB and SmD1; the interaction is favored by methylation of the Sm proteins. Interacts with Actn; the interaction occurs in thoracic tissues and in adult flies. Interacts with Rpp20, msk and snupn. Ref.1 Ref.5 Ref.6 Ref.7 Ref.9 Ref.12 Ref.13 Ref.19 Ref.20 Ref.22 Ref.23

Subcellular location

Cytoplasm. Nucleusgem. CytoplasmmyofibrilsarcomereI band. CytoplasmmyofibrilsarcomereZ line. Note: Component of U bodies. High expression detected in the cytoplasm of female germline stem cells and cystoblast which persists up to stage 10 egg chambers. Accumulates in the cytoplasm of dividing pNBs. Colocalizes with Actn at the Z-line of IFMs. Expression concentrates at the post-synaptic region of NMJs in larval brain. Ref.8 Ref.9 Ref.10 Ref.11 Ref.14 Ref.15 Ref.16

Tissue specificity

In late first instar larvae, expressed in pNBs. Expression increases as the pNBs enlarge, with the highest accumulation observed in dividing pNBs of second and third instar larvae. Enriched in type ID (thoracic and brain lobe), type IA and all the mira-expressing NBs of the brain lobes. In larvae, also expressed in muscle fibers. In larval and adult testis, expressed in germline stem cells and gonialblast, expression decreases as cells differentiate into cysts and spermatocytes. In adult fly thorax, expressed in the IFMs. In adult ovary, expressed in germline stem cells, cystoblasts, follicle cells, nurse cells and oocyte (at protein level). Also expressed in larval salivary glands. Ref.5 Ref.8 Ref.9 Ref.10 Ref.14 Ref.16

Developmental stage

Expressed both maternally and zygotically. Expressed ubiquitously throughout development. Expression is high during embryogenesis but decreases 30-fold in adult flies (at protein level). Ref.1 Ref.5 Ref.8 Ref.9 Ref.11

Disruption phenotype

Embryos lacking maternal and zygotic Smn die between 0 and 4 hours after egg laying. Zygotic mutants never initiate pupation but instead persist as third instar larvae, often surviving at this stage for several days. Mutant larvae exhibit reduced CNS, testes and muscle size, decreased locomotion and altered rhythmic motor activity. At the NMJ, mutant larvae show an overall decrease in the number of synaptic boutons, but an increase in enlarged ones, loss of large glutamate receptor clusters and an aberrant increase in evoked excitatory postsynaptic potential (eEPSP) amplitude and in miniature EPSP frequency. Mutant larvae also show defective mira subcellular localization in pNBs. Mutant larvae show a decrease of spliceosomal snRNA levels and splicing defects in U12 intron-containing genes (Ref.19). But appreciable splicing defects in U12 intron-containing genes are not observed in mutant larvae, although a decrease in spliceosomal snRNA levels is detected, in Ref.20. Ref.5 Ref.9 Ref.11 Ref.14 Ref.16 Ref.18 Ref.19 Ref.20

Sequence similarities

Belongs to the SMN family.

Contains 1 Tudor domain.

Ontologies

Keywords
   Biological processmRNA processing
mRNA splicing
   Cellular componentCytoplasm
Nucleus
Spliceosome
   Molecular functionDevelopmental protein
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processalpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate selective glutamate receptor clustering

Inferred from mutant phenotype Ref.5. Source: UniProtKB

basal protein localization

Inferred from mutant phenotype Ref.16. Source: UniProtKB

central nervous system development

Inferred from mutant phenotype Ref.16. Source: UniProtKB

chromosome organization

Inferred from mutant phenotype Ref.14. Source: UniProtKB

cytoplasmic U snRNP body assembly

Inferred from mutant phenotype Ref.14. Source: UniProtKB

cytoplasmic mRNA processing body assembly

Inferred from mutant phenotype Ref.14. Source: UniProtKB

embryo development

Inferred from mutant phenotype Ref.5. Source: UniProtKB

larval development

Inferred from mutant phenotype Ref.5. Source: UniProtKB

larval locomotory behavior

Inferred from mutant phenotype Ref.5Ref.20Ref.18Ref.19. Source: UniProtKB

mRNA splicing, via spliceosome

Inferred from mutant phenotype Ref.20Ref.19. Source: UniProtKB

neuromuscular junction development

Inferred from mutant phenotype Ref.5. Source: UniProtKB

neuromuscular synaptic transmission

Inferred from mutant phenotype Ref.18Ref.19. Source: UniProtKB

oocyte morphogenesis

Inferred from mutant phenotype Ref.5. Source: UniProtKB

positive regulation of synaptic transmission, cholinergic

Inferred from mutant phenotype Ref.18Ref.19. Source: UniProtKB

regulation of excitatory postsynaptic membrane potential

Inferred from mutant phenotype Ref.5Ref.18Ref.19. Source: UniProtKB

ribonucleoprotein complex assembly

Inferred from mutant phenotype PubMed 18923150. Source: FlyBase

skeletal muscle thin filament assembly

Inferred from mutant phenotype Ref.9. Source: FlyBase

spliceosomal snRNP assembly

Inferred from direct assay Ref.12. Source: UniProtKB

stem cell differentiation

Inferred from mutant phenotype Ref.16. Source: UniProtKB

stem cell division

Inferred from mutant phenotype Ref.16. Source: UniProtKB

stem cell proliferation

Inferred from mutant phenotype Ref.16. Source: UniProtKB

terminal button organization

Inferred from mutant phenotype Ref.5. Source: UniProtKB

terminal cell fate specification, open tracheal system

Inferred from mutant phenotype Ref.21. Source: FlyBase

   Cellular_componentCajal body

Inferred from direct assay Ref.8Ref.10Ref.11PubMed 18923150. Source: FlyBase

Gemini of coiled bodies

Inferred from direct assay Ref.14. Source: UniProtKB

I band

Inferred from direct assay Ref.9. Source: FlyBase

SMN-Gemin2 complex

Inferred from direct assay Ref.12. Source: UniProtKB

SmD-containing SMN-Sm protein complex

Inferred from direct assay Ref.12. Source: UniProtKB

Z disc

Inferred from direct assay Ref.9. Source: FlyBase

cytoplasm

Inferred from direct assay Ref.14Ref.16. Source: UniProtKB

cytoplasmic U snRNP body

Inferred from direct assay Ref.14. Source: UniProtKB

neuromuscular junction

Inferred from direct assay Ref.11. Source: FlyBase

nucleus

Inferred from direct assay Ref.9. Source: FlyBase

spliceosomal complex

Inferred from electronic annotation. Source: UniProtKB-KW

   Molecular_functionRNA binding

Inferred from electronic annotation. Source: InterPro

alpha-actinin binding

Inferred from physical interaction Ref.9. Source: FlyBase

identical protein binding

Inferred from physical interaction PubMed 14605208Ref.6. Source: IntAct

protein binding

Inferred from physical interaction Ref.6. Source: IntAct

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

itself2EBI-185315,EBI-185315
Rpp20Q2MGL33EBI-185315,EBI-1151669
SNRPNP631622EBI-185315,EBI-712493From a different organism.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 226226Survival motor neuron protein
PRO_0000424374

Regions

Domain69 – 12860Tudor
Region159 – 22668Required for homodimerization Ref.1

Experimental info

Mutagenesis201D → V: Does not affect homodimer formation. Ref.20
Mutagenesis701F → S: Does not affect homodimer formation. Ref.20
Mutagenesis2011S → F in allele Smn-B; homozygous lethal at late larval stages and abolishes homodimerization. Ref.5
Mutagenesis2021G → S in allele Smn-73Ao; homozygous lethal at late larval stages and abolishes homodimerization. Ref.5
Mutagenesis2031Y → C: Weakly inhibits homodimer formation. Ref.20
Mutagenesis2051T → I: Rescues larval viability and locomotion defects and only partially restores U5 and U12 snRNA levels in the null mutant. Weakly inhibits homodimer formation. Does not affect protein stability. Ref.20
Mutagenesis2061G → S: Inhibits homodimer formation. Ref.20

Secondary structure

... 226
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Q9VV74 [UniParc].

Last modified May 1, 2000. Version 1.
Checksum: 9F00D85A3E9614C7

FASTA22624,622
        10         20         30         40         50         60 
MSDETNAAVW DDSLLVKTYD ESVGLAREAL ARRLADSTNK REEENAAAAE EEAGEISATG 

        70         80         90        100        110        120 
GATSPEPVSF KVGDYARATY VDGVDYEGAV VSINEEKGTC VLRYLGYENE QEVLLVDLLP 

       130        140        150        160        170        180 
SWGKRVRREQ FLIAKKDEDE QLSRPKASAG SHSKTPKSSR RSRISGGLVM PPMPPVPPMI 

       190        200        210        220 
VGQGDGAEQD FVAMLTAWYM SGYYTGLYQG KKEASTTSGK KKTPKK 

« Hide

References

« Hide 'large scale' references
[1]"Disruption of SMN function by ectopic expression of the human SMN gene in Drosophila."
Miguel-Aliaga I., Chan Y.B., Davies K.E., van den Heuvel M.
FEBS Lett. 486:99-102(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], SUBUNIT, DEVELOPMENTAL STAGE.
[2]"The genome sequence of Drosophila melanogaster."
Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.W., Hoskins R.A., Galle R.F., George R.A., Lewis S.E., Richards S., Ashburner M., Henderson S.N., Sutton G.G., Wortman J.R., Yandell M.D. expand/collapse author list , Zhang Q., Chen L.X., Brandon R.C., Rogers Y.-H.C., Blazej R.G., Champe M., Pfeiffer B.D., Wan K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Miklos G.L.G., Abril J.F., Agbayani A., An H.-J., Andrews-Pfannkoch C., Baldwin D., Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley E.M., Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov S., Borkova D., Botchan M.R., Bouck J., Brokstein P., Brottier P., Burtis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., de Pablos B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz S.M., Dodson K., Doup L.E., Downes M., Dugan-Rocha S., Dunkov B.C., Dunn P., Durbin K.J., Evangelista C.C., Ferraz C., Ferriera S., Fleischmann W., Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser K., Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris M., Harris N.L., Harvey D.A., Heiman T.J., Hernandez J.R., Houck J., Hostin D., Houston K.A., Howland T.J., Wei M.-H., Ibegwam C., Jalali M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Ketchum K.A., Kimmel B.E., Kodira C.D., Kraft C.L., Kravitz S., Kulp D., Lai Z., Lasko P., Lei Y., Levitsky A.A., Li J.H., Li Z., Liang Y., Lin X., Liu X., Mattei B., McIntosh T.C., McLeod M.P., McPherson D., Merkulov G., Milshina N.V., Mobarry C., Morris J., Moshrefi A., Mount S.M., Moy M., Murphy B., Murphy L., Muzny D.M., Nelson D.L., Nelson D.R., Nelson K.A., Nixon K., Nusskern D.R., Pacleb J.M., Palazzolo M., Pittman G.S., Pan S., Pollard J., Puri V., Reese M.G., Reinert K., Remington K., Saunders R.D.C., Scheeler F., Shen H., Shue B.C., Siden-Kiamos I., Simpson M., Skupski M.P., Smith T.J., Spier E., Spradling A.C., Stapleton M., Strong R., Sun E., Svirskas R., Tector C., Turner R., Venter E., Wang A.H., Wang X., Wang Z.-Y., Wassarman D.A., Weinstock G.M., Weissenbach J., Williams S.M., Woodage T., Worley K.C., Wu D., Yang S., Yao Q.A., Ye J., Yeh R.-F., Zaveri J.S., Zhan M., Zhang G., Zhao Q., Zheng L., Zheng X.H., Zhong F.N., Zhong W., Zhou X., Zhu S.C., Zhu X., Smith H.O., Gibbs R.A., Myers E.W., Rubin G.M., Venter J.C.
Science 287:2185-2195(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: Berkeley.
[3]"Annotation of the Drosophila melanogaster euchromatic genome: a systematic review."
Misra S., Crosby M.A., Mungall C.J., Matthews B.B., Campbell K.S., Hradecky P., Huang Y., Kaminker J.S., Millburn G.H., Prochnik S.E., Smith C.D., Tupy J.L., Whitfield E.J., Bayraktaroglu L., Berman B.P., Bettencourt B.R., Celniker S.E., de Grey A.D.N.J. expand/collapse author list , Drysdale R.A., Harris N.L., Richter J., Russo S., Schroeder A.J., Shu S.Q., Stapleton M., Yamada C., Ashburner M., Gelbart W.M., Rubin G.M., Lewis S.E.
Genome Biol. 3:RESEARCH0083.1-RESEARCH0083.22(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: GENOME REANNOTATION.
Strain: Berkeley.
[4]"A Drosophila full-length cDNA resource."
Stapleton M., Carlson J.W., Brokstein P., Yu C., Champe M., George R.A., Guarin H., Kronmiller B., Pacleb J.M., Park S., Wan K.H., Rubin G.M., Celniker S.E.
Genome Biol. 3:RESEARCH0080.1-RESEARCH0080.8(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: Berkeley.
Tissue: Larva and Pupae.
[5]"Neuromuscular defects in a Drosophila survival motor neuron gene mutant."
Chan Y.B., Miguel-Aliaga I., Franks C., Thomas N., Trulzsch B., Sattelle D.B., Davies K.E., van den Heuvel M.
Hum. Mol. Genet. 12:1367-1376(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBUNIT, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE, DISRUPTION PHENOTYPE, MUTAGENESIS OF SER-201 AND GLY-202.
[6]"Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress."
Hua Y., Zhou J.
Biochem. Biophys. Res. Commun. 314:268-276(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBUNIT, INTERACTION WITH RPP20.
[7]"The Sm-protein methyltransferase, dart5, is essential for germ-cell specification and maintenance."
Gonsalvez G.B., Rajendra T.K., Tian L., Matera A.G.
Curr. Biol. 16:1077-1089(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMB.
[8]"The Drosophila melanogaster Cajal body."
Liu J.L., Murphy C., Buszczak M., Clatterbuck S., Goodman R., Gall J.G.
J. Cell Biol. 172:875-884(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE.
[9]"A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle."
Rajendra T.K., Gonsalvez G.B., Walker M.P., Shpargel K.B., Salz H.K., Matera A.G.
J. Cell Biol. 176:831-841(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBUNIT, INTERACTION WITH ACTN, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE, DISRUPTION PHENOTYPE.
[10]"U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies."
Liu J.L., Gall J.G.
Proc. Natl. Acad. Sci. U.S.A. 104:11655-11659(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
[11]"Modeling spinal muscular atrophy in Drosophila."
Chang H.C., Dimlich D.N., Yokokura T., Mukherjee A., Kankel M.W., Sen A., Sridhar V., Fulga T.A., Hart A.C., Van Vactor D., Artavanis-Tsakonas S.
PLoS ONE 3:E3209-E3209(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, DEVELOPMENTAL STAGE, DISRUPTION PHENOTYPE.
[12]"Evolution of an RNP assembly system: a minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster."
Kroiss M., Schultz J., Wiesner J., Chari A., Sickmann A., Fischer U.
Proc. Natl. Acad. Sci. U.S.A. 105:10045-10050(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, IDENTIFICATION IN THE SMN COMPLEX, INTERACTION WITH THE SPLICEOSOME USNRNP PROTEINS SNRNP-U1-70K, U2A, SNF/U1A AND U5-116KD, INTERACTION WITH THE SNRNP SM PROTEINS, INTERACTION WITH GEM3.
[13]"Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster."
Gonsalvez G.B., Praveen K., Hicks A.J., Tian L., Matera A.G.
RNA 14:878-887(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMD1.
[14]"The spinal muscular atrophy protein SMN affects Drosophila germline nuclear organization through the U body-P body pathway."
Lee L., Davies S.E., Liu J.L.
Dev. Biol. 332:142-155(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, DISRUPTION PHENOTYPE.
[15]"Drosophila SMN complex proteins Gemin2, Gemin3, and Gemin5 are components of U bodies."
Cauchi R.J., Sanchez-Pulido L., Liu J.L.
Exp. Cell Res. 316:2354-2364(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: SUBCELLULAR LOCATION.
[16]"Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila."
Grice S.J., Liu J.L.
PLoS Genet. 7:E1002030-E1002030(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, DISRUPTION PHENOTYPE.
[17]"Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster."
Timmerman C., Sanyal S.
Brain Res. 1489:66-80(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[18]"SMN is required for sensory-motor circuit function in Drosophila."
Imlach W.L., Beck E.S., Choi B.J., Lotti F., Pellizzoni L., McCabe B.D.
Cell 151:427-439(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DISRUPTION PHENOTYPE.
[19]"An SMN-dependent U12 splicing event essential for motor circuit function."
Lotti F., Imlach W.L., Saieva L., Beck E.S., Hao le T., Li D.K., Jiao W., Mentis G.Z., Beattie C.E., McCabe B.D., Pellizzoni L.
Cell 151:440-454(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBUNIT, DISRUPTION PHENOTYPE.
[20]"A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects."
Praveen K., Wen Y., Matera A.G.
Cell Rep. 1:624-631(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBUNIT, DISRUPTION PHENOTYPE, MUTAGENESIS OF ASP-20; PHE-70; TYR-203; THR-205 AND GLY-206.
[21]"Drosophila Zpr1 (Zinc finger protein 1) is required downstream of both EGFR and FGFR signaling in tracheal subcellular lumen formation."
Ruiz O.E., Nikolova L.S., Metzstein M.M.
PLoS ONE 7:E45649-E45649(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[22]"Identification and characterization of Drosophila Snurportin reveals a role for the import receptor Moleskin/Importin7 in snRNP biogenesis."
Natalizio A.H., Matera A.G.
Mol. Biol. Cell 24:2932-2942(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH MSK AND SNUPN.
[23]"Structural basis of assembly chaperone-mediated snRNP formation."
Grimm C., Chari A., Pelz J.P., Kuper J., Kisker C., Diederichs K., Stark H., Schindelin H., Fischer U.
Mol. Cell 49:692-703(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (3.10 ANGSTROMS) OF 1-122, FUNCTION, SUBUNIT.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF296281 mRNA. Translation: AAG17893.1.
AE014296 Genomic DNA. Translation: AAF49446.1.
AE014296 Genomic DNA. Translation: AGB94647.1.
AY058529 mRNA. Translation: AAL13758.1.
RefSeqNP_001261954.1. NM_001275025.1.
NP_524112.1. NM_079388.4.
UniGeneDm.2679.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1VU2X-ray3.101/E/M/U/c/k/s1-122[»]
1VU3X-ray3.10E/M/U/c/k/s1-122[»]
4F77X-ray3.101/E/M/U/c/k/s1-122[»]
ProteinModelPortalQ9VV74.
SMRQ9VV74. Positions 2-27, 68-121.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

DIPDIP-18223N.
IntActQ9VV74. 8 interactions.
MINTMINT-750365.
STRING7227.FBpp0075153.

Proteomic databases

PRIDEQ9VV74.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblMetazoaFBtr0075395; FBpp0075153; FBgn0036641.
FBtr0329921; FBpp0302954; FBgn0036641.
GeneID39844.
KEGGdme:Dmel_CG16725.
UCSCCG16725-RA. d. melanogaster.

Organism-specific databases

CTD39844.
FlyBaseFBgn0036641. Smn.

Phylogenomic databases

eggNOGNOG296671.
InParanoidQ9VV74.
KOK13129.
OMASAMLMSW.
OrthoDBEOG7K6PVX.
PhylomeDBQ9VV74.

Family and domain databases

InterProIPR010304. Survival_motor_neuron.
IPR002999. Tudor.
[Graphical view]
PfamPF06003. SMN. 1 hit.
[Graphical view]
SMARTSM00333. TUDOR. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

GenomeRNAi39844.
NextBio815685.

Entry information

Entry nameSMN_DROME
AccessionPrimary (citable) accession number: Q9VV74
Entry history
Integrated into UniProtKB/Swiss-Prot: November 13, 2013
Last sequence update: May 1, 2000
Last modified: July 9, 2014
This is version 120 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programDrosophila annotation project

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

Drosophila

Drosophila: entries, gene names and cross-references to FlyBase