Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Lipase-like PAD4

Gene

PAD4

Organism
Arabidopsis thaliana (Mouse-ear cress)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Probable lipase required downstream of MPK4 for accumulation of the plant defense-potentiating molecule, salicylic acid, thus contributing to the plant innate immunity against invasive biotrophic pathogens and to defense mechanisms upon recognition of microbe-associated molecular patterns (MAMPs). Participates in the regulation of various molecular and physiological processes that influence fitness. Together with SG101, required for programmed cell death (PCD) triggered by NBS-LRR resistance proteins (e.g. RPS4, RPW8.1 and RPW8.2) in response to the fungal toxin fumonisin B1 (FB1) and avirulent pathogens (e.g. P.syringae pv. tomato strain DC3000 avrRps4 and pv. maculicola, turnip crinkle virus (TCV), and H.arabidopsidis isolates CALA2, EMOY2, EMWA1 and HIND4). Together with EDS1, confers a basal resistance by restricting the growth of virulent pathogens (e.g. H.arabidopsidis isolates NOCO2 and EMCO5, E.orontii isolate MGH, and P.syringae pv. tomato strain DC3000 or expressing HopW1-1 (HopPmaA)). Necessary for the salicylic acid-(SA-) dependent systemic acquired resistance (SAR) response that involves expression of multiple defense responses, including synthesis of the phytoalexin camalexin and expression of pathogenesis-related genes (e.g. PR1, ALD1, BGL2 and PR5) in response to pathogens, triggering a signal amplification loop that increases SA levels via EDS5 and SID2, but, together with EDS1, seems to repress the ethylene/jasmonic acid (ET/JA) defense pathway. May also function in response to abiotic stresses such as UV-C light and LSD1-dependent acclimatization to light conditions that promote excess excitation energy (EEE), probably by transducing redox signals and modulating stomatal conductance. Regulates the formation of lysigenous aerenchyma in hypocotyls in response to hypoxia, maybe via hydrogen peroxide production. Modulates leaf senescence in insect-infested tissue and triggers a phloem-based defense mechanism including antibiosis (e.g. green peach aphid (GPA), M.persicae) to limit phloem sap uptake and insect growth, thus providing an EDS1-independent basal resistance to insects. Also involved in regulation of root meristematic zone-targeted growth arrest together with EDS1 and in a VICTR-dependent manner.30 Publications

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Active sitei118 – 1181NucleophileBy similarity
Active sitei178 – 1781Charge relay systemBy similarity
Active sitei229 – 2291Charge relay systemBy similarity

GO - Molecular functioni

  • lipase activity Source: TAIR
  • transferase activity Source: UniProtKB-KW

GO - Biological processi

  • aerenchyma formation Source: TAIR
  • cellular response to trehalose stimulus Source: UniProtKB
  • defense response to bacterium, incompatible interaction Source: UniProtKB
  • defense response to insect Source: TAIR
  • ethylene-activated signaling pathway Source: UniProtKB-KW
  • leaf senescence Source: TAIR
  • lipid catabolic process Source: UniProtKB-KW
  • negative regulation of defense response Source: TAIR
  • negative regulation of ethylene-activated signaling pathway Source: UniProtKB
  • plant-type hypersensitive response Source: UniProtKB-KW
  • positive regulation of camalexin biosynthetic process Source: UniProtKB
  • positive regulation of cell death Source: UniProtKB
  • positive regulation of defense response to bacterium Source: UniProtKB
  • positive regulation of defense response to insect Source: UniProtKB
  • positive regulation of salicylic acid mediated signaling pathway Source: UniProtKB
  • regulation of hydrogen peroxide metabolic process Source: TAIR
  • regulation of jasmonic acid mediated signaling pathway Source: UniProtKB
  • regulation of salicylic acid biosynthetic process Source: UniProtKB
  • regulation of salicylic acid mediated signaling pathway Source: UniProtKB
  • response to bacterium Source: UniProtKB
  • response to hypoxia Source: TAIR
  • response to insect Source: UniProtKB
  • response to other organism Source: TAIR
  • response to salicylic acid Source: UniProtKB
  • response to UV-C Source: UniProtKB
  • systemic acquired resistance Source: TAIR
  • systemic acquired resistance, salicylic acid mediated signaling pathway Source: UniProtKB
Complete GO annotation...

Keywords - Molecular functioni

Hydrolase, Transferase

Keywords - Biological processi

Ethylene signaling pathway, Hypersensitive response, Jasmonic acid signaling pathway, Lipid degradation, Lipid metabolism, Plant defense

Protein family/group databases

ESTHERiarath-PAD4. Plant_lipase_EDS1-like.

Names & Taxonomyi

Protein namesi
Recommended name:
Lipase-like PAD4 (EC:2.3.1.-)
Alternative name(s):
Protein ENHANCED DISEASE SUSCEPTIBILITY 9
Protein PHYTOALEXIN DEFICIENT 4
Short name:
AtPAD4
Gene namesi
Name:PAD4
Synonyms:EDS9
Ordered Locus Names:At3g52430
ORF Names:F22O6.190
OrganismiArabidopsis thaliana (Mouse-ear cress)
Taxonomic identifieri3702 [NCBI]
Taxonomic lineageiEukaryotaViridiplantaeStreptophytaEmbryophytaTracheophytaSpermatophytaMagnoliophytaeudicotyledonsGunneridaePentapetalaerosidsmalvidsBrassicalesBrassicaceaeCamelineaeArabidopsis
Proteomesi
  • UP000006548 Componenti: Chromosome 3

Organism-specific databases

TAIRiAT3G52430.

Subcellular locationi

GO - Cellular componenti

  • cytoplasm Source: UniProtKB
  • nucleus Source: UniProtKB
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Nucleus

Pathology & Biotechi

Disruption phenotypei

Impaired camalexin accumulation, reduced synthesis of salicylic acid (SA) and ethylene (ET), and altered expression of pathogenesis-related genes (e.g. PR1, ALD1, BGL2 and PR5) upon some pathogenic infections (e.g. P.syringae) and microbe-associated molecular patterns (MAMPs) recognition. Loss of the systemic acquired resistance response. Reduced fitness characterized by lower seed yield and survival rate. Increased sensitivity to P.syringae, H.arabidopsidis, turnip crinkle virus (TCV) and E.orontii. These phenotypes are reversed by SA treatment. Altered sensitivity to jasmonic acid (JA) and ethylene (ET) signaling. Decreased susceptibility to the fungal toxin fumonisin B1 (FB1) that mediates programmed cell death (PCD). Impaired induction of EDS5/SID1 expression after UV-C light exposure and pathogen attack. Altered LSD1-dependent acclimatization to light conditions that promote excess excitation energy (EEE). Impaired formation of lysigenous aerenchyma in response to hypoxia. Reduced resistance against green peach aphid (GPA, M.persicae) due to increased phloem sap uptake, reduced accumulation of antibiotic activity in petiole exudates, and delayed leaf senescence in insect-infested tissue, including chlorophyll loss, cell death, and senescence associated genes (SAG) expression. Loss of [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione- (DFPM-) induced root growth arrest and inhibition of stomatal closing mediated by abscisic acid (ABA).27 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi16 – 161M → A: Loss of interaction with EDS1; when associated with S-21. Loss of interaction with EDS1; when associated with S-21 and A-143. 1 Publication
Mutagenesisi21 – 211L → S: Loss of interaction with EDS1; when associated with A-16. Loss of interaction with EDS1; when associated with A-16 and A-143. 1 Publication
Mutagenesisi118 – 1181S → A: Loss of antibiosis and deterrence against green peach aphid (GPA, M.persicae) feeding, but normal leaf senescence and plant defense against pathogens. 1 Publication
Mutagenesisi143 – 1431F → A: Loss of interaction with EDS1; when associated with A-16 and S-21. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 541541Lipase-like PAD4PRO_0000429488Add
BLAST

Proteomic databases

PaxDbiQ9S745.
PRIDEiQ9S745.

Expressioni

Inductioni

By benzothiadiazole (BTH), at site of green peach aphid feeding (GPA, M.persicae) via TPS11-dependent trehalose accumulation, and H.arabidopsidis. Induced by P.syringae in a NPR1-independent manner, and by salicylic acid (SA) in a NPR1-dependent manner.6 Publications

Gene expression databases

GenevisibleiQ9S745. AT.

Interactioni

Subunit structurei

Part of a nuclear complex made of EDS1, SG101 and PAD4 that can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. Sabilized by direct interaction with EDS1 in infected leaves. Part of a nuclear protein complex made of VICTR, PAD4 and EDS1 (PubMed:23275581). Interacts with VICTR (PubMed:23275581). Interacts with EDS1 (PubMed:24331460).6 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
EDS1Q9SU724EBI-1390441,EBI-1390454

Protein-protein interaction databases

BioGridi9726. 2 interactions.
IntActiQ9S745. 1 interaction.
STRINGi3702.AT3G52430.1.

Structurei

3D structure databases

ProteinModelPortaliQ9S745.
SMRiQ9S745. Positions 98-520.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Sequence similaritiesi

Belongs to the AB hydrolase superfamily. Lipase family.Curated

Phylogenomic databases

eggNOGiENOG410IJZD. Eukaryota.
ENOG410Y7YA. LUCA.
InParanoidiQ9S745.
OMAiRTKGHYM.
PhylomeDBiQ9S745.

Family and domain databases

Gene3Di3.40.50.1820. 1 hit.
InterProiIPR029058. AB_hydrolase.
IPR002921. Fungal_lipase-like.
[Graphical view]
PfamiPF01764. Lipase_3. 1 hit.
[Graphical view]
SUPFAMiSSF53474. SSF53474. 1 hit.

Sequencei

Sequence statusi: Complete.

Q9S745-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MDDCRFETSE LQASVMISTP LFTDSWSSCN TANCNGSIKI HDIAGITYVA
60 70 80 90 100
IPAVSMIQLG NLVGLPVTGD VLFPGLSSDE PLPMVDAAIL KLFLQLKIKE
110 120 130 140 150
GLELELLGKK LVVITGHSTG GALAAFTALW LLSQSSPPSF RVFCITFGSP
160 170 180 190 200
LLGNQSLSTS ISRSRLAHNF CHVVSIHDLV PRSSNEQFWP FGTYLFCSDK
210 220 230 240 250
GGVCLDNAGS VRLMFNILNT TATQNTEEHQ RYGHYVFTLS HMFLKSRSFL
260 270 280 290 300
GGSIPDNSYQ AGVALAVEAL GFSNDDTSGV LVKECIETAT RIVRAPILRS
310 320 330 340 350
AELANELASV LPARLEIQWY KDRCDASEEQ LGYYDFFKRY SLKRDFKVNM
360 370 380 390 400
SRIRLAKFWD TVIKMVETNE LPFDFHLGKK WIYASQFYQL LAEPLDIANF
410 420 430 440 450
YKNRDIKTGG HYLEGNRPKR YEVIDKWQKG VKVPEECVRS RYASTTQDTC
460 470 480 490 500
FWAKLEQAKE WLDEARKESS DPQRRSLLRE KIVPFESYAN TLVTKKEVSL
510 520 530 540
DVKAKNSSYS VWEANLKEFK CKMGYENEIE MVVDESDAME T
Length:541
Mass (Da):60,985
Last modified:May 1, 2000 - v1
Checksum:iD6D5D3EBB522C11A
GO

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF188329 mRNA. Translation: AAF09479.1.
EF470727 Genomic DNA. Translation: ABR46037.1.
EF470728 Genomic DNA. Translation: ABR46038.1.
EF470729 Genomic DNA. Translation: ABR46039.1.
EF470731 Genomic DNA. Translation: ABR46041.1.
EF470733 Genomic DNA. Translation: ABR46043.1.
EF470735 Genomic DNA. Translation: ABR46045.1.
EF470736 Genomic DNA. Translation: ABR46046.1.
EF470737 Genomic DNA. Translation: ABR46047.1.
EF470741 Genomic DNA. Translation: ABR46051.1.
EF470742 Genomic DNA. Translation: ABR46052.1.
EF470743 Genomic DNA. Translation: ABR46053.1.
AL050300 Genomic DNA. Translation: CAB43438.1.
CP002686 Genomic DNA. Translation: AEE78945.1.
EU405144 Genomic DNA. Translation: ABZ02805.1.
EU405145 Genomic DNA. Translation: ABZ02806.1.
EU405146 Genomic DNA. Translation: ABZ02807.1.
EU405149 Genomic DNA. Translation: ABZ02810.1.
EU405150 Genomic DNA. Translation: ABZ02811.1.
EU405152 Genomic DNA. Translation: ABZ02813.1.
EU405153 Genomic DNA. Translation: ABZ02814.1.
EU405155 Genomic DNA. Translation: ABZ02816.1.
EU405159 Genomic DNA. Translation: ABZ02820.1.
EU405161 Genomic DNA. Translation: ABZ02822.1.
EU405162 Genomic DNA. Translation: ABZ02823.1.
EU405163 Genomic DNA. Translation: ABZ02824.1.
EU405164 Genomic DNA. Translation: ABZ02825.1.
EU405173 Genomic DNA. Translation: ABZ02834.1.
EU405174 Genomic DNA. Translation: ABZ02835.1.
EU405175 Genomic DNA. Translation: ABZ02836.1.
EU405177 Genomic DNA. Translation: ABZ02838.1.
EU405180 Genomic DNA. Translation: ABZ02841.1.
EU405181 Genomic DNA. Translation: ABZ02842.1.
EU405183 Genomic DNA. Translation: ABZ02844.1.
EU405188 Genomic DNA. Translation: ABZ02849.1.
EU405190 Genomic DNA. Translation: ABZ02851.1.
EU405192 Genomic DNA. Translation: ABZ02853.1.
EU405193 Genomic DNA. Translation: ABZ02854.1.
EU405194 Genomic DNA. Translation: ABZ02855.1.
EU405195 Genomic DNA. Translation: ABZ02856.1.
EU405197 Genomic DNA. Translation: ABZ02858.1.
EU405205 Genomic DNA. Translation: ABZ02866.1.
EU405206 Genomic DNA. Translation: ABZ02867.1.
EU405208 Genomic DNA. Translation: ABZ02869.1.
EU405209 Genomic DNA. Translation: ABZ02870.1.
EU405210 Genomic DNA. Translation: ABZ02871.1.
EU405212 Genomic DNA. Translation: ABZ02873.1.
EU405213 Genomic DNA. Translation: ABZ02874.1.
EU405214 Genomic DNA. Translation: ABZ02875.1.
EU405215 Genomic DNA. Translation: ABZ02876.1.
EU405217 Genomic DNA. Translation: ABZ02878.1.
EU405219 Genomic DNA. Translation: ABZ02880.1.
EU405223 Genomic DNA. Translation: ABZ02884.1.
EU405224 Genomic DNA. Translation: ABZ02885.1.
EU405228 Genomic DNA. Translation: ABZ02889.1.
EU405231 Genomic DNA. Translation: ABZ02892.1.
EU405232 Genomic DNA. Translation: ABZ02893.1.
EU405237 Genomic DNA. Translation: ABZ02898.1.
PIRiT08456.
RefSeqiNP_190811.1. NM_115103.3.
UniGeneiAt.22858.
At.69183.
At.69581.

Genome annotation databases

EnsemblPlantsiAT3G52430.1; AT3G52430.1; AT3G52430.
GeneIDi824408.
GrameneiAT3G52430.1; AT3G52430.1; AT3G52430.
KEGGiath:AT3G52430.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AF188329 mRNA. Translation: AAF09479.1.
EF470727 Genomic DNA. Translation: ABR46037.1.
EF470728 Genomic DNA. Translation: ABR46038.1.
EF470729 Genomic DNA. Translation: ABR46039.1.
EF470731 Genomic DNA. Translation: ABR46041.1.
EF470733 Genomic DNA. Translation: ABR46043.1.
EF470735 Genomic DNA. Translation: ABR46045.1.
EF470736 Genomic DNA. Translation: ABR46046.1.
EF470737 Genomic DNA. Translation: ABR46047.1.
EF470741 Genomic DNA. Translation: ABR46051.1.
EF470742 Genomic DNA. Translation: ABR46052.1.
EF470743 Genomic DNA. Translation: ABR46053.1.
AL050300 Genomic DNA. Translation: CAB43438.1.
CP002686 Genomic DNA. Translation: AEE78945.1.
EU405144 Genomic DNA. Translation: ABZ02805.1.
EU405145 Genomic DNA. Translation: ABZ02806.1.
EU405146 Genomic DNA. Translation: ABZ02807.1.
EU405149 Genomic DNA. Translation: ABZ02810.1.
EU405150 Genomic DNA. Translation: ABZ02811.1.
EU405152 Genomic DNA. Translation: ABZ02813.1.
EU405153 Genomic DNA. Translation: ABZ02814.1.
EU405155 Genomic DNA. Translation: ABZ02816.1.
EU405159 Genomic DNA. Translation: ABZ02820.1.
EU405161 Genomic DNA. Translation: ABZ02822.1.
EU405162 Genomic DNA. Translation: ABZ02823.1.
EU405163 Genomic DNA. Translation: ABZ02824.1.
EU405164 Genomic DNA. Translation: ABZ02825.1.
EU405173 Genomic DNA. Translation: ABZ02834.1.
EU405174 Genomic DNA. Translation: ABZ02835.1.
EU405175 Genomic DNA. Translation: ABZ02836.1.
EU405177 Genomic DNA. Translation: ABZ02838.1.
EU405180 Genomic DNA. Translation: ABZ02841.1.
EU405181 Genomic DNA. Translation: ABZ02842.1.
EU405183 Genomic DNA. Translation: ABZ02844.1.
EU405188 Genomic DNA. Translation: ABZ02849.1.
EU405190 Genomic DNA. Translation: ABZ02851.1.
EU405192 Genomic DNA. Translation: ABZ02853.1.
EU405193 Genomic DNA. Translation: ABZ02854.1.
EU405194 Genomic DNA. Translation: ABZ02855.1.
EU405195 Genomic DNA. Translation: ABZ02856.1.
EU405197 Genomic DNA. Translation: ABZ02858.1.
EU405205 Genomic DNA. Translation: ABZ02866.1.
EU405206 Genomic DNA. Translation: ABZ02867.1.
EU405208 Genomic DNA. Translation: ABZ02869.1.
EU405209 Genomic DNA. Translation: ABZ02870.1.
EU405210 Genomic DNA. Translation: ABZ02871.1.
EU405212 Genomic DNA. Translation: ABZ02873.1.
EU405213 Genomic DNA. Translation: ABZ02874.1.
EU405214 Genomic DNA. Translation: ABZ02875.1.
EU405215 Genomic DNA. Translation: ABZ02876.1.
EU405217 Genomic DNA. Translation: ABZ02878.1.
EU405219 Genomic DNA. Translation: ABZ02880.1.
EU405223 Genomic DNA. Translation: ABZ02884.1.
EU405224 Genomic DNA. Translation: ABZ02885.1.
EU405228 Genomic DNA. Translation: ABZ02889.1.
EU405231 Genomic DNA. Translation: ABZ02892.1.
EU405232 Genomic DNA. Translation: ABZ02893.1.
EU405237 Genomic DNA. Translation: ABZ02898.1.
PIRiT08456.
RefSeqiNP_190811.1. NM_115103.3.
UniGeneiAt.22858.
At.69183.
At.69581.

3D structure databases

ProteinModelPortaliQ9S745.
SMRiQ9S745. Positions 98-520.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi9726. 2 interactions.
IntActiQ9S745. 1 interaction.
STRINGi3702.AT3G52430.1.

Protein family/group databases

ESTHERiarath-PAD4. Plant_lipase_EDS1-like.

Proteomic databases

PaxDbiQ9S745.
PRIDEiQ9S745.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblPlantsiAT3G52430.1; AT3G52430.1; AT3G52430.
GeneIDi824408.
GrameneiAT3G52430.1; AT3G52430.1; AT3G52430.
KEGGiath:AT3G52430.

Organism-specific databases

TAIRiAT3G52430.

Phylogenomic databases

eggNOGiENOG410IJZD. Eukaryota.
ENOG410Y7YA. LUCA.
InParanoidiQ9S745.
OMAiRTKGHYM.
PhylomeDBiQ9S745.

Miscellaneous databases

PROiQ9S745.

Gene expression databases

GenevisibleiQ9S745. AT.

Family and domain databases

Gene3Di3.40.50.1820. 1 hit.
InterProiIPR029058. AB_hydrolase.
IPR002921. Fungal_lipase-like.
[Graphical view]
PfamiPF01764. Lipase_3. 1 hit.
[Graphical view]
SUPFAMiSSF53474. SSF53474. 1 hit.
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling."
    Jirage D., Tootle T.L., Reuber T.L., Frost L.N., Feys B.J., Parker J.E., Ausubel F.M., Glazebrook J.
    Proc. Natl. Acad. Sci. U.S.A. 96:13583-13588(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, DISRUPTION PHENOTYPE, IDENTIFICATION, INDUCTION BY P.SYRINGAE AND SALICYLIC ACID (SA).
    Strain: cv. Columbia.
  2. "Arabidopsis thaliana genes encoding defense signaling and recognition proteins exhibit contrasting evolutionary dynamics."
    Caldwell K.S., Michelmore R.W.
    Genetics 181:671-684(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], REVIEW ON PLANT DEFENSE.
    Strain: cv. Aa-0, cv. Ak-1, cv. Bay-0, cv. Columbia, cv. Di-0, cv. Gu-0, cv. HOG, cv. Landsberg erecta, cv. Sha, cv. Sorbo and cv. Tsu-0.
  3. "Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana."
    Salanoubat M., Lemcke K., Rieger M., Ansorge W., Unseld M., Fartmann B., Valle G., Bloecker H., Perez-Alonso M., Obermaier B., Delseny M., Boutry M., Grivell L.A., Mache R., Puigdomenech P., De Simone V., Choisne N., Artiguenave F.
    , Robert C., Brottier P., Wincker P., Cattolico L., Weissenbach J., Saurin W., Quetier F., Schaefer M., Mueller-Auer S., Gabel C., Fuchs M., Benes V., Wurmbach E., Drzonek H., Erfle H., Jordan N., Bangert S., Wiedelmann R., Kranz H., Voss H., Holland R., Brandt P., Nyakatura G., Vezzi A., D'Angelo M., Pallavicini A., Toppo S., Simionati B., Conrad A., Hornischer K., Kauer G., Loehnert T.-H., Nordsiek G., Reichelt J., Scharfe M., Schoen O., Bargues M., Terol J., Climent J., Navarro P., Collado C., Perez-Perez A., Ottenwaelder B., Duchemin D., Cooke R., Laudie M., Berger-Llauro C., Purnelle B., Masuy D., de Haan M., Maarse A.C., Alcaraz J.-P., Cottet A., Casacuberta E., Monfort A., Argiriou A., Flores M., Liguori R., Vitale D., Mannhaupt G., Haase D., Schoof H., Rudd S., Zaccaria P., Mewes H.-W., Mayer K.F.X., Kaul S., Town C.D., Koo H.L., Tallon L.J., Jenkins J., Rooney T., Rizzo M., Walts A., Utterback T., Fujii C.Y., Shea T.P., Creasy T.H., Haas B., Maiti R., Wu D., Peterson J., Van Aken S., Pai G., Militscher J., Sellers P., Gill J.E., Feldblyum T.V., Preuss D., Lin X., Nierman W.C., Salzberg S.L., White O., Venter J.C., Fraser C.M., Kaneko T., Nakamura Y., Sato S., Kato T., Asamizu E., Sasamoto S., Kimura T., Idesawa K., Kawashima K., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Muraki A., Nakayama S., Nakazaki N., Shinpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M., Tabata S.
    Nature 408:820-822(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: cv. Columbia.
  4. The Arabidopsis Information Resource (TAIR)
    Submitted (APR-2011) to the EMBL/GenBank/DDBJ databases
    Cited for: GENOME REANNOTATION.
    Strain: cv. Columbia.
  5. "Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana."
    Bakker E.G., Traw M.B., Toomajian C., Kreitman M., Bergelson J.
    Genetics 178:2031-2043(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 227-434, REVIEW ON PLANT DEFENSE.
  6. "Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening."
    Glazebrook J., Rogers E.E., Ausubel F.M.
    Genetics 143:973-982(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  7. "Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance."
    Glazebrook J., Zook M., Mert F., Kagan I., Rogers E.E., Crute I.R., Holub E.B., Hammerschmidt R., Ausubel F.M.
    Genetics 146:381-392(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  8. "PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis."
    Zhou N., Tootle T.L., Tsui F., Klessig D.F., Glazebrook J.
    Plant Cell 10:1021-1030(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  9. "Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants."
    Reuber T.L., Plotnikova J.M., Dewdney J., Rogers E.E., Wood W., Ausubel F.M.
    Plant J. 16:473-485(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia and cv. Landsberg erecta.
  10. "Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA."
    Gupta V., Willits M.G., Glazebrook J.
    Mol. Plant Microbe Interact. 13:503-511(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  11. "Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways."
    Asai T., Stone J.M., Heard J.E., Kovtun Y., Yorgey P., Sheen J., Ausubel F.M.
    Plant Cell 12:1823-1836(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  12. "Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4."
    Feys B.J., Moisan L.J., Newman M.-A., Parker J.E.
    EMBO J. 20:5400-5411(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INTERACTION WITH EDS1, INDUCTION BY SALICYLIC ACID AND PATHOGENS.
  13. "The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis."
    Rusterucci C., Aviv D.H., Holt B.F. III, Dangl J.L., Parker J.E.
    Plant Cell 13:2211-2224(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  14. "EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family."
    Nawrath C., Heck S., Parinthawong N., Metraux J.-P.
    Plant Cell 14:275-286(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  15. "Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signalling components."
    van der Biezen E.A., Freddie C.T., Kahn K., Parker J.E., Jones J.D.
    Plant J. 29:439-451(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  16. "Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction."
    Heck S., Grau T., Buchala A., Metraux J.P., Nawrath C.
    Plant J. 36:342-352(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  17. "A key role for ALD1 in activation of local and systemic defenses in Arabidopsis."
    Song J.T., Lu H., McDowell J.M., Greenberg J.T.
    Plant J. 40:200-212(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  18. "LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy."
    Mateo A., Muhlenbock P., Rusterucci C., Chang C.C., Miszalski Z., Karpinska B., Parker J.E., Mullineaux P.M., Karpinski S.
    Plant Physiol. 136:2818-2830(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  19. Cited for: REVIEW.
  20. "Genetic analysis of developmentally regulated resistance to downy mildew (Hyaloperonospora parasitica) in Arabidopsis thaliana."
    McDowell J.M., Williams S.G., Funderburg N.T., Eulgem T., Dangl J.L.
    Mol. Plant Microbe Interact. 18:1226-1234(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  21. "Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity."
    Feys B.J., Wiermer M., Bhat R.A., Moisan L.J., Medina-Escobar N., Neu C., Cabral A., Parker J.E.
    Plant Cell 17:2601-2613(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH EDS1, SUBCELLULAR LOCATION.
  22. "The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis."
    Xiao S., Calis O., Patrick E., Zhang G., Charoenwattana P., Muskett P., Parker J.E., Turner J.G.
    Plant J. 42:95-110(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  23. "Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid."
    Pegadaraju V., Knepper C., Reese J., Shah J.
    Plant Physiol. 139:1927-1934(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INDUCTION BY GREEN PEACH APHID.
  24. "Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4."
    Brodersen P., Petersen M., Bjorn Nielsen H., Zhu S., Newman M.A., Shokat K.M., Rietz S., Parker J., Mundy J.
    Plant J. 47:532-546(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  25. "Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1."
    Muehlenbock P., Plaszczyca M., Plaszczyca M., Mellerowicz E., Karpinski S.
    Plant Cell 19:3819-3830(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  26. "Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1."
    Pegadaraju V., Louis J., Singh V., Reese J.C., Bautor J., Feys B.J., Cook G., Parker J.E., Shah J.
    Plant J. 52:332-341(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia, cv. Landsberg erecta and cv. Wassilewskija.
  27. "Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis."
    Chandra-Shekara A.C., Venugopal S.C., Barman S.R., Kachroo A., Kachroo P.
    Proc. Natl. Acad. Sci. U.S.A. 104:7277-7282(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  28. "Interplay between MAMP-triggered and SA-mediated defense responses."
    Tsuda K., Sato M., Glazebrook J., Cohen J.D., Katagiri F.
    Plant J. 53:763-775(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  29. "Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1."
    Lee M.W., Jelenska J., Greenberg J.T.
    Plant J. 54:452-465(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  30. "PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid."
    Louis J., Leung Q., Pegadaraju V., Reese J., Shah J.
    Mol. Plant Microbe Interact. 23:618-627(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  31. "Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity."
    Rietz S., Stamm A., Malonek S., Wagner S., Becker D., Medina-Escobar N., Vlot A.C., Feys B.J., Niefind K., Parker J.E.
    New Phytol. 191:107-119(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH EDS1, INDUCTION BY HYALOPERONOSPORA ARABIDOPSIDIS, SUBCELLULAR LOCATION.
    Strain: cv. Wassilewskija.
  32. "TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae."
    Singh V., Louis J., Ayre B.G., Reese J.C., Pegadaraju V., Shah J.
    Plant J. 67:94-104(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION BY GREEN PEACH APHID AND TREHALOSE.
  33. "SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus."
    Zhu S., Jeong R.-D., Venugopal S.C., Lapchyk L., Navarre D., Kachroo A., Kachroo P.
    PLoS Pathog. 7:E1002318-E1002318(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, SUBCELLULAR LOCATION, SUBUNIT, INTERACTION WITH EDS1.
  34. "Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis."
    Kim T.H., Kunz H.H., Bhattacharjee S., Hauser F., Park J., Engineer C., Liu A., Ha T., Parker J.E., Gassmann W., Schroeder J.I.
    Plant Cell 24:5177-5192(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INTERACTION WITH VICTR, SUBUNIT.
    Strain: cv. Columbia.
  35. "Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens."
    Louis J., Gobbato E., Mondal H.A., Feys B.J., Parker J.E., Shah J.
    Plant Physiol. 158:1860-1872(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, MUTAGENESIS OF SER-118.
  36. "Green peach aphid infestation induces Arabidopsis PHYTOALEXIN-DEFICIENT4 expression at site of insect feeding."
    Louis J., Mondal H.A., Shah J.
    Plant Signal. Behav. 7:1431-1433(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION BY GREEN PEACH APHID.
  37. "Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis."
    Wituszynska W., Slesak I., Vanderauwera S., Szechynska-Hebda M., Kornas A., Van Der Kelen K., Muhlenbock P., Karpinska B., Mackowski S., Van Breusegem F., Karpinski S.
    Plant Physiol. 161:1795-1805(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  38. "Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity."
    Wagner S., Stuttmann J., Rietz S., Guerois R., Brunstein E., Bautor J., Niefind K., Parker J.E.
    Cell Host Microbe 14:619-630(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH EDS1, 3D-STRUCTURE MODELING, MUTAGENESIS OF MET-16; LEU-21 AND PHE-143.

Entry informationi

Entry nameiPAD4_ARATH
AccessioniPrimary (citable) accession number: Q9S745
Secondary accession number(s): B0ZUC0
Entry historyi
Integrated into UniProtKB/Swiss-Prot: July 9, 2014
Last sequence update: May 1, 2000
Last modified: February 17, 2016
This is version 109 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programPlant Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. Arabidopsis thaliana
    Arabidopsis thaliana: entries and gene names
  2. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.