Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q9QUK6 (TLR4_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 127. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Toll-like receptor 4
Alternative name(s):
CD_antigen=CD284
Gene names
Name:Tlr4
Synonyms:Lps
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length835 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Cooperates with LY96 and CD14 to mediate the innate immune response to bacterial lipopolysaccharide (LPS). Acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response By similarity. Ref.7

Subunit structure

Belongs to the lipopolysaccharide (LPS) receptor, a multi-protein complex containing at least CD14, LY96 and TLR4. Binding to bacterial LPS leads to homodimerization. Interacts with LY96 via the extracellular domain. Interacts with MYD88 and TIRAP via their respective TIR domains. Interacts with NOX4 By similarity. Interacts with CNPY3 and HSP90B1; this interaction is required for proper folding in the endoplasmic reticulum. Interacts with MLK4; this interaction leads to negative regulation of TLR4 signaling By similarity. Ref.8 Ref.9

Subcellular location

Membrane; Single-pass type I membrane protein By similarity.

Tissue specificity

Highly expressed in heart, spleen, lung and muscle. Lower levels are found in liver and kidney.

Domain

The TIR domain mediates interaction with NOX4 By similarity.

Polymorphism

Interstrain analyzes reveals that TLR4 is a polymorphic protein and that the extracellular domain is far more variable than the cytoplasmic domain, which is variable at the C-terminal.

Involvement in disease

The protein is encoded by the Lps locus, an important susceptibility locus, influencing the propensity to develop a disseminated Gram-negative infection.

Sequence similarities

Belongs to the Toll-like receptor family.

Contains 19 LRR (leucine-rich) repeats.

Contains 1 LRRCT domain.

Contains 1 TIR domain.

Ontologies

Keywords
   Biological processImmunity
Inflammatory response
Innate immunity
   Cellular componentMembrane
   Coding sequence diversityPolymorphism
   DiseaseDisease mutation
   DomainLeucine-rich repeat
Repeat
Signal
Transmembrane
Transmembrane helix
   Molecular functionReceptor
   PTMDisulfide bond
Glycoprotein
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processB cell proliferation involved in immune response

Inferred from mutant phenotype PubMed 10880523. Source: MGI

I-kappaB phosphorylation

Inferred from electronic annotation. Source: Ensembl

MyD88-dependent toll-like receptor signaling pathway

Inferred from electronic annotation. Source: InterPro

activation of MAPK activity

Inferred from mutant phenotype PubMed 20051628. Source: BHF-UCL

activation of NF-kappaB-inducing kinase activity

Non-traceable author statement PubMed 11490012. Source: UniProtKB

activation of innate immune response

Inferred from mutant phenotype PubMed 15661922. Source: MGI

cellular response to lipopolysaccharide

Inferred from mutant phenotype PubMed 20051628. Source: BHF-UCL

cellular response to lipoteichoic acid

Inferred from mutant phenotype PubMed 10549626. Source: MGI

cellular response to mechanical stimulus

Inferred from electronic annotation. Source: Ensembl

defense response to Gram-negative bacterium

Inferred from mutant phenotype PubMed 15661922. Source: MGI

detection of lipopolysaccharide

Traceable author statement PubMed 15356140. Source: BHF-UCL

innate immune response

Traceable author statement PubMed 15356140. Source: BHF-UCL

interferon-gamma production

Inferred from genetic interaction PubMed 11489994. Source: MGI

intestinal epithelial structure maintenance

Inferred from mutant phenotype PubMed 20051628. Source: BHF-UCL

lipopolysaccharide-mediated signaling pathway

Inferred from direct assay PubMed 10880523. Source: MGI

macrophage activation

Inferred from sequence or structural similarity PubMed 10835634. Source: UniProtKB

mast cell activation

Non-traceable author statement PubMed 11490012PubMed 11739561. Source: UniProtKB

negative regulation of ERK1 and ERK2 cascade

Inferred from mutant phenotype PubMed 20051628. Source: BHF-UCL

negative regulation of interferon-gamma production

Inferred from mutant phenotype PubMed 20051628. Source: BHF-UCL

negative regulation of interleukin-17 production

Inferred from mutant phenotype PubMed 18203139PubMed 20051628. Source: BHF-UCL

negative regulation of interleukin-23 production

Inferred from mutant phenotype PubMed 18203139. Source: BHF-UCL

negative regulation of interleukin-6 production

Inferred from mutant phenotype PubMed 18203139PubMed 20051628. Source: BHF-UCL

negative regulation of tumor necrosis factor production

Inferred from mutant phenotype PubMed 20051628. Source: BHF-UCL

nitric oxide production involved in inflammatory response

Inferred from mutant phenotype PubMed 10623794. Source: MGI

positive regulation of B cell proliferation

Inferred from mutant phenotype PubMed 10549626. Source: MGI

positive regulation of ERK1 and ERK2 cascade

Inferred from direct assay PubMed 18261938. Source: MGI

positive regulation of I-kappaB kinase/NF-kappaB signaling

Inferred from direct assay PubMed 16260493PubMed 18261938PubMed 19734906. Source: MGI

positive regulation of JNK cascade

Inferred from direct assay PubMed 16260493PubMed 18261938. Source: MGI

positive regulation of MHC class II biosynthetic process

Inferred from mutant phenotype PubMed 10549626. Source: MGI

positive regulation of NF-kappaB import into nucleus

Inferred from electronic annotation. Source: Ensembl

positive regulation of NF-kappaB transcription factor activity

Inferred from electronic annotation. Source: Ensembl

positive regulation of chemokine production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interferon-alpha production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interferon-beta biosynthetic process

Inferred from mutant phenotype PubMed 15661922. Source: MGI

positive regulation of interferon-beta production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interferon-gamma production

Inferred from mutant phenotype PubMed 18203139. Source: BHF-UCL

positive regulation of interleukin-1 biosynthetic process

Non-traceable author statement PubMed 11490012. Source: UniProtKB

positive regulation of interleukin-1 production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interleukin-10 production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interleukin-12 biosynthetic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of interleukin-12 production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interleukin-13 biosynthetic process

Non-traceable author statement PubMed 11490012. Source: UniProtKB

positive regulation of interleukin-6 biosynthetic process

Non-traceable author statement PubMed 11490012. Source: UniProtKB

positive regulation of interleukin-6 production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of interleukin-8 biosynthetic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of interleukin-8 production

Inferred from electronic annotation. Source: Ensembl

positive regulation of lymphocyte proliferation

Inferred from mutant phenotype PubMed 10607756. Source: MGI

positive regulation of macrophage cytokine production

Inferred from mutant phenotype PubMed 10549626. Source: MGI

positive regulation of nitric oxide biosynthetic process

Inferred from mutant phenotype PubMed 10549626. Source: MGI

positive regulation of nitric-oxide synthase biosynthetic process

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of nucleotide-binding oligomerization domain containing 1 signaling pathway

Inferred from direct assay PubMed 18261938. Source: MGI

positive regulation of nucleotide-binding oligomerization domain containing 2 signaling pathway

Inferred from direct assay PubMed 18261938. Source: MGI

positive regulation of platelet activation

Inferred from mutant phenotype PubMed 16514062. Source: BHF-UCL

positive regulation of stress-activated MAPK cascade

Inferred from direct assay PubMed 18261938. Source: MGI

positive regulation of transcription from RNA polymerase II promoter

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

positive regulation of tumor necrosis factor biosynthetic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of tumor necrosis factor production

Inferred from direct assay PubMed 15356140. Source: BHF-UCL

regulation of cytokine secretion

Inferred from electronic annotation. Source: InterPro

regulation of inflammatory response

Inferred from mutant phenotype PubMed 18203139. Source: BHF-UCL

response to bacterium

Inferred from mutant phenotype PubMed 11294571. Source: MGI

response to lipopolysaccharide

Inferred from mutant phenotype PubMed 10229796PubMed 10549626PubMed 10607756PubMed 12055258. Source: MGI

toll-like receptor 4 signaling pathway

Inferred from electronic annotation. Source: InterPro

   Cellular_componentexternal side of plasma membrane

Inferred from electronic annotation. Source: Ensembl

integral component of plasma membrane

Inferred from electronic annotation. Source: Ensembl

lipopolysaccharide receptor complex

Inferred from sequence or structural similarity. Source: UniProtKB

perinuclear region of cytoplasm

Inferred from electronic annotation. Source: Ensembl

   Molecular_functionlipopolysaccharide receptor activity

Inferred from sequence or structural similarity. Source: UniProtKB

transmembrane signaling receptor activity

Inferred from electronic annotation. Source: InterPro

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

Ly96Q9JHF93EBI-1534575,EBI-1534566

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 2525 Potential
Chain26 – 835810Toll-like receptor 4
PRO_0000034723

Regions

Topological domain26 – 638613Extracellular Potential
Transmembrane639 – 65921Helical; Potential
Topological domain660 – 835176Cytoplasmic Potential
Repeat54 – 7522LRR 1
Repeat78 – 9922LRR 2
Repeat102 – 12322LRR 3
Repeat126 – 14722LRR 4
Repeat150 – 17122LRR 5
Repeat175 – 19824LRR 6
Repeat204 – 22421LRR 7
Repeat226 – 24722LRR 8
Repeat248 – 26922LRR 9
Repeat329 – 34921LRR 10
Repeat350 – 37021LRR 11
Repeat372 – 39221LRR 12
Repeat398 – 42023LRR 13
Repeat421 – 44222LRR 14
Repeat446 – 46722LRR 15
Repeat470 – 49021LRR 16
Repeat495 – 51622LRR 17
Repeat519 – 54022LRR 18
Repeat543 – 56422LRR 19
Domain576 – 62752LRRCT
Domain670 – 816147TIR

Amino acid modifications

Glycosylation341N-linked (GlcNAc...) Ref.11
Glycosylation751N-linked (GlcNAc...) Ref.11
Glycosylation1721N-linked (GlcNAc...) Ref.11
Glycosylation2041N-linked (GlcNAc...) Ref.11
Glycosylation2371N-linked (GlcNAc...) Ref.11
Glycosylation3071N-linked (GlcNAc...) Ref.11
Glycosylation4921N-linked (GlcNAc...) Ref.11
Glycosylation4951N-linked (GlcNAc...)
Glycosylation5241N-linked (GlcNAc...) Ref.11
Glycosylation5721N-linked (GlcNAc...) Ref.11
Glycosylation5751N-linked (GlcNAc...) Potential
Glycosylation6131N-linked (GlcNAc...) Potential
Glycosylation6211N-linked (GlcNAc...) Potential
Glycosylation6221N-linked (GlcNAc...) Potential
Disulfide bond28 ↔ 39
Disulfide bond280 ↔ 304
Disulfide bond388 ↔ 389
Disulfide bond580 ↔ 606
Disulfide bond582 ↔ 625

Natural variations

Natural variant941D → N in strain: KK/HLJ. Ref.5
Natural variant2091M → I in strain: A/J, BALB/cJ, P/J, SODL/EI, SEA/GNJ, NZW/LACJ and VM/DK. Ref.5
Natural variant2191D → G in strain: SEA/GNJ. Ref.5
Natural variant2541V → I in strain: A/J, BALB/cJ and SEA/GNJ. Ref.5
Natural variant4231Q → L in strain: SEA/GNJ. Ref.5
Natural variant4771A → S in strain: P/J. Ref.5
Natural variant5161T → A in strain: LP/J. Ref.5
Natural variant5931E → D in strain: A/J, BALB/cJ, P/J, SODL/EI, SEA/GNJ, NZW/LACJ and VM/DK. Ref.5
Natural variant6001N → I in strain: KK/HLJ. Ref.5
Natural variant6071A → V in strain: P/J. Ref.5
Natural variant6371V → I in strain: P/J. Ref.5
Natural variant7121P → H in Lps-tolerant mice. Ref.2 Ref.3
Natural variant7611R → H in strain: A/J, BALB/cJ, SODL/EI, SEA/GNJ, NZW/LACJ and VM/DK. Ref.5
Natural variant8111N → K in strain: P/J. Ref.5

Experimental info

Sequence conflict87 – 15468CEIET…TLKKL → EMNTESKSSEAHALALSHIL SPCQPSRRKLRVKLGSLSYQ RAEEGVRSSEIGYSCLHVDT RHDINAVD Ref.6

Secondary structure

................................................................................................................ 835
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Q9QUK6 [UniParc].

Last modified May 1, 2000. Version 1.
Checksum: 9C83B59F9A220C17

FASTA83595,519
        10         20         30         40         50         60 
MMPPWLLART LIMALFFSCL TPGSLNPCIE VVPNITYQCM DQKLSKVPDD IPSSTKNIDL 

        70         80         90        100        110        120 
SFNPLKILKS YSFSNFSELQ WLDLSRCEIE TIEDKAWHGL HHLSNLILTG NPIQSFSPGS 

       130        140        150        160        170        180 
FSGLTSLENL VAVETKLASL ESFPIGQLIT LKKLNVAHNF IHSCKLPAYF SNLTNLVHVD 

       190        200        210        220        230        240 
LSYNYIQTIT VNDLQFLREN PQVNLSLDMS LNPIDFIQDQ AFQGIKLHEL TLRGNFNSSN 

       250        260        270        280        290        300 
IMKTCLQNLA GLHVHRLILG EFKDERNLEI FEPSIMEGLC DVTIDEFRLT YTNDFSDDIV 

       310        320        330        340        350        360 
KFHCLANVSA MSLAGVSIKY LEDVPKHFKW QSLSIIRCQL KQFPTLDLPF LKSLTLTMNK 

       370        380        390        400        410        420 
GSISFKKVAL PSLSYLDLSR NALSFSGCCS YSDLGTNSLR HLDLSFNGAI IMSANFMGLE 

       430        440        450        460        470        480 
ELQHLDFQHS TLKRVTEFSA FLSLEKLLYL DISYTNTKID FDGIFLGLTS LNTLKMAGNS 

       490        500        510        520        530        540 
FKDNTLSNVF ANTTNLTFLD LSKCQLEQIS WGVFDTLHRL QLLNMSHNNL LFLDSSHYNQ 

       550        560        570        580        590        600 
LYSLSTLDCS FNRIETSKGI LQHFPKSLAF FNLTNNSVAC ICEHQKFLQW VKEQKQFLVN 

       610        620        630        640        650        660 
VEQMTCATPV EMNTSLVLDF NNSTCYMYKT IISVSVVSVI VVSTVAFLIY HFYFHLILIA 

       670        680        690        700        710        720 
GCKKYSRGES IYDAFVIYSS QNEDWVRNEL VKNLEEGVPR FHLCLHYRDF IPGVAIAANI 

       730        740        750        760        770        780 
IQEGFHKSRK VIVVVSRHFI QSRWCIFEYE IAQTWQFLSS RSGIIFIVLE KVEKSLLRQQ 

       790        800        810        820        830 
VELYRLLSRN TYLEWEDNPL GRHIFWRRLK NALLDGKASN PEQTAEEEQE TATWT 

« Hide

References

« Hide 'large scale' references
[1]"Genetic and physical mapping of the Lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region."
Poltorak A., Smirnova I., He X., Liu M.-Y., Van Huffel C., Birdwell D., Alejos E., Silva M., Du X., Thompson P., Chan E.K.L., Ledesma J., Roe B., Clifton S., Vogel S.N., Beutler B.
Blood Cells Mol. Dis. 24:340-355(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA].
Strain: C3H/HeJ.
[2]"Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene."
Poltorak A., He X., Smirnova I., Liu M.-Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B.
Science 282:2085-2088(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANT LPS-TOLERANT HIS-712.
Strain: C3H/HeJ.
[3]"Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4)."
Qureshi S.T., Lariviere L., Leveque G., Clermont S., Moore K.J., Gros P., Malo D.
J. Exp. Med. 189:615-625(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], VARIANT LPS-TOLERANT HIS-712.
Strain: C57BL/6J.
[4]"The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens."
Underhill D.M., Ozinsky A., Hajjar A.M., Stevens A., Wilson C.B., Bassetti M., Aderem A.
Nature 401:811-815(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
Tissue: Macrophage.
[5]"Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4)."
Smirnova I., Poltorak A., Chan E.K.L., McBride C., Beutler B.
Genome Biol. 1:RESEARCH002.1-RESEARCH002.10(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS ASN-94; ILE-209; GLY-219; ILE-254; LEU-423; SER-477; ALA-516; ASP-593; ILE-600; VAL-607; ILE-637; HIS-761 AND LYS-811.
Strain: Various strains.
[6]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 1-154.
Strain: C57BL/6J.
Tissue: Skin.
[7]"Murine Toll-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase."
Rhee S.H., Hwang D.
J. Biol. Chem. 275:34035-34040(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[8]"A single base mutation in the PRAT4A gene reveals differential interaction of PRAT4A with Toll-like receptors."
Kiyokawa T., Akashi-Takamura S., Shibata T., Matsumoto F., Nishitani C., Kuroki Y., Seto Y., Miyake K.
Int. Immunol. 20:1407-1415(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CNPY3.
[9]"Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone."
Liu B., Yang Y., Qiu Z., Staron M., Hong F., Li Y., Wu S., Li Y., Hao B., Bona R., Han D., Li Z.
Nat. Commun. 1:79-79(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HSP90B1.
[10]Erratum
Liu B., Yang Y., Qiu Z., Staron M., Hong F., Li Y., Wu S., Li Y., Hao B., Bona R., Han D., Li Z.
Nat. Commun. 3:653-653(2012)
[11]"Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran."
Kim H.M., Park B.S., Kim J.-I., Kim S.E., Lee J., Oh S.C., Enkhbayar P., Matsushima N., Lee H., Yoo O.J., Lee J.-O.
Cell 130:906-917(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.84 ANGSTROMS) OF 27-625 IN COMPLEX WITH LY96, GLYCOSYLATION AT ASN-34; ASN-75; ASN-172; ASN-204; ASN-237; ASN-307; ASN-492; ASN-524 AND ASN-572.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF095353 mRNA. Translation: AAC99411.1.
AF110133 mRNA. Translation: AAD29272.1.
AF185285 mRNA. Translation: AAF04278.1.
AF177767 Genomic DNA. Translation: AAF05317.1.
AK014533 mRNA. No translation available.
RefSeqNP_067272.1. NM_021297.2.
UniGeneMm.38049.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2Z64X-ray2.84A27-625[»]
3VQ1X-ray2.70A/B22-627[»]
3VQ2X-ray2.48A/B22-627[»]
ProteinModelPortalQ9QUK6.
SMRQ9QUK6. Positions 27-814.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid204224. 21 interactions.
DIPDIP-38573N.
IntActQ9QUK6. 5 interactions.
STRING10090.ENSMUSP00000045770.

Chemistry

BindingDBQ9QUK6.
ChEMBLCHEMBL1795167.

PTM databases

PhosphoSiteQ9QUK6.

Proteomic databases

PRIDEQ9QUK6.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000048096; ENSMUSP00000045770; ENSMUSG00000039005.
GeneID21898.
KEGGmmu:21898.
UCSCuc008thv.1. mouse.

Organism-specific databases

CTD7099.
MGIMGI:96824. Tlr4.

Phylogenomic databases

eggNOGNOG249751.
GeneTreeENSGT00750000117512.
HOGENOMHOG000037951.
HOVERGENHBG018823.
InParanoidQ9QUK6.
KOK10160.
OMACHIHTIE.
OrthoDBEOG7ZKS9G.
PhylomeDBQ9QUK6.
TreeFamTF351113.

Gene expression databases

ArrayExpressQ9QUK6.
BgeeQ9QUK6.
CleanExMM_TLR4.
GenevestigatorQ9QUK6.

Family and domain databases

Gene3D3.40.50.10140. 1 hit.
InterProIPR000483. Cys-rich_flank_reg_C.
IPR000157. TIR_dom.
IPR027168. TLR4.
IPR017241. Toll-like_receptor.
[Graphical view]
PANTHERPTHR24365:SF9. PTHR24365:SF9. 1 hit.
PfamPF01582. TIR. 1 hit.
[Graphical view]
PIRSFPIRSF037595. Toll-like_receptor. 1 hit.
SMARTSM00082. LRRCT. 1 hit.
SM00255. TIR. 1 hit.
[Graphical view]
SUPFAMSSF52200. SSF52200. 1 hit.
PROSITEPS50104. TIR. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

EvolutionaryTraceQ9QUK6.
NextBio301436.
PROQ9QUK6.
SOURCESearch...

Entry information

Entry nameTLR4_MOUSE
AccessionPrimary (citable) accession number: Q9QUK6
Secondary accession number(s): Q9D691, Q9QZF5, Q9Z203
Entry history
Integrated into UniProtKB/Swiss-Prot: February 11, 2002
Last sequence update: May 1, 2000
Last modified: April 16, 2014
This is version 127 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot