Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q9NQB0 (TF7L2_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 147. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Transcription factor 7-like 2
Alternative name(s):
HMG box transcription factor 4
T-cell-specific transcription factor 4
Short name=T-cell factor 4
Short name=TCF-4
Short name=hTCF-4
Gene names
Name:TCF7L2
Synonyms:TCF4
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length619 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Participates in the Wnt signaling pathway and modulates MYC expression by binding to its promoter in a sequence-specific manner. Acts as repressor in the absence of CTNNB1, and as activator in its presence. Activates transcription from promoters with several copies of the Tcf motif 5'-CCTTTGATC-3' in the presence of CTNNB1. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7L2/TCF4 and CTNNB1. Expression of dominant-negative mutants results in cell-cycle arrest in G1. Necessary for the maintenance of the epithelial stem-cell compartment of the small intestine. Ref.11 Ref.15 Ref.16 Ref.24 Ref.26

Subunit structure

Interacts with TGFB1I1 By similarity. Interacts with CTNNB1 (via the armadillo repeat); forms stable transcription complex. Interacts with EP300. Interacts with NLK. Interacts with CCDC85B (probably through the HMG box); prevents interaction with CTNNB1. Interacts with TNIK. Interacts with MAD2L2; prevents TCF7L2/TCF4 binding to promZIPK/DAPK3oters, negatively modulating its transcriptional activity. Interacts with ZIPK/DAPK3. Interacts with XIAP/BIRC4 and TLE3. Interacts with DDIT3/CHOP. The CTNNB1 and TCF7L2/TCF4 complex interacts with PML (isoform PML-4) Identified in a complex with CTNNB1 and FERMT2. Interacts with SPIN1. Ref.1 Ref.12 Ref.13 Ref.14 Ref.16 Ref.17 Ref.18 Ref.19 Ref.21 Ref.22 Ref.23 Ref.24 Ref.25 Ref.26 Ref.27 Ref.28 Ref.29 Ref.30 Ref.34

Subcellular location

NucleusPML body. Note: Diffuse pattern. Colocalizes with SUMO1 and PIAS4 in a subset of PML (promyelocytic leukemia) nuclear bodies. Ref.12 Ref.16 Ref.26

Tissue specificity

Detected in epithelium from small intestine, with the highest expression at the top of the crypts and a gradient of expression from crypt to villus. Detected in colon epithelium and colon cancer, and in epithelium from mammary gland and carcinomas derived therefrom. Ref.12

Developmental stage

Highly expressed in crypt regions and barely detectable in villi in epithelium from fetal small intestine at week 16. At week 22 expression in villi had increased strongly.

Domain

The promoter-specific activation domain interacts with the transcriptional coactivator EP300.

Post-translational modification

In vitro, phosphorylated by TNIK. Ref.18

Phosphorylated at Thr-201 and/or Thr-212 by NLK. Phosphorylation by NLK at these sites inhibits DNA-binding by TCF7L2/TCF4, thereby preventing transcriptional activation of target genes of the canonical Wnt/beta-catenin signaling pathway. Ref.18

Polysumoylated. Sumoylation is enhanced by PIAS family members and desumoylation is enhanced by SENP2. Sumoylation/desumoylation regulates TCF7L2/TCF4 transcription activity in the Wnt/beta-catenin signaling pathway without altering interaction with CTNNB1 nor binding to DNA. Ref.16

Involvement in disease

Constitutive activation and subsequent transactivation of target genes may lead to the maintenance of stem-cell characteristics (cycling and longevity) in cells that should normally undergo terminal differentiation and constitute the primary transforming event in colorectal cancer (CRC).

Diabetes mellitus, non-insulin-dependent (NIDDM) [MIM:125853]: A multifactorial disorder of glucose homeostasis caused by a lack of sensitivity to the body's own insulin. Affected individuals usually have an obese body habitus and manifestations of a metabolic syndrome characterized by diabetes, insulin resistance, hypertension and hypertriglyceridemia. The disease results in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.
Note: Disease susceptibility is associated with variations affecting the gene represented in this entry. Ref.20 Ref.31

Sequence similarities

Belongs to the TCF/LEF family.

Contains 1 HMG box DNA-binding domain.

Ontologies

Keywords
   Biological processTranscription
Transcription regulation
Wnt signaling pathway
   Cellular componentNucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   DiseaseDiabetes mellitus
   LigandDNA-binding
   Molecular functionActivator
Repressor
   PTMIsopeptide bond
Phosphoprotein
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processblood vessel development

Inferred from mutant phenotype PubMed 15578569. Source: BHF-UCL

bone mineralization

Inferred from electronic annotation. Source: Ensembl

brain development

Inferred from Biological aspect of Ancestor. Source: RefGenome

canonical Wnt signaling pathway

Inferred by curator Ref.1. Source: BHF-UCL

canonical Wnt signaling pathway involved in positive regulation of epithelial to mesenchymal transition

Inferred from mutant phenotype PubMed 17072303. Source: BHF-UCL

catenin import into nucleus

Inferred from electronic annotation. Source: Ensembl

cell cycle arrest

Inferred from mutant phenotype Ref.15. Source: BHF-UCL

cell proliferation

Inferred from mutant phenotype Ref.15. Source: BHF-UCL

embryonic digestive tract morphogenesis

Inferred from electronic annotation. Source: Ensembl

embryonic genitalia morphogenesis

Inferred from electronic annotation. Source: Ensembl

embryonic hindgut morphogenesis

Inferred from electronic annotation. Source: Ensembl

face morphogenesis

Inferred from electronic annotation. Source: Ensembl

fat cell differentiation

Inferred from direct assay PubMed 10937998. Source: BHF-UCL

generation of neurons

Inferred from Biological aspect of Ancestor. Source: RefGenome

glucose homeostasis

Inferred from direct assay PubMed 15525634. Source: BHF-UCL

maintenance of DNA repeat elements

Inferred from mutant phenotype PubMed 18755497. Source: BHF-UCL

myoblast fate commitment

Inferred from direct assay PubMed 10937998. Source: BHF-UCL

negative regulation of BMP signaling pathway

Inferred from electronic annotation. Source: Ensembl

negative regulation of canonical Wnt signaling pathway

Inferred from mutant phenotype PubMed 16532032. Source: UniProtKB

negative regulation of extrinsic apoptotic signaling pathway

Inferred from direct assay PubMed 18071026. Source: BHF-UCL

negative regulation of fat cell differentiation

Inferred from electronic annotation. Source: Ensembl

negative regulation of fibroblast growth factor receptor signaling pathway

Inferred from electronic annotation. Source: Ensembl

negative regulation of organ growth

Inferred from electronic annotation. Source: Ensembl

negative regulation of sequence-specific DNA binding transcription factor activity

Inferred from direct assay PubMed 12799378. Source: BHF-UCL

negative regulation of transcription from RNA polymerase II promoter

Inferred from direct assay PubMed 12799378. Source: BHF-UCL

negative regulation of transcription, DNA-templated

Inferred from mutant phenotype PubMed 16532032. Source: UniProtKB

negative regulation of type B pancreatic cell apoptotic process

Inferred from direct assay PubMed 18071026. Source: BHF-UCL

neural tube development

Inferred from electronic annotation. Source: Ensembl

odontogenesis of dentin-containing tooth

Inferred from electronic annotation. Source: Ensembl

oligodendrocyte development

Inferred from electronic annotation. Source: Ensembl

pancreas development

Traceable author statement PubMed 18216022. Source: BHF-UCL

pituitary gland development

Inferred from electronic annotation. Source: Ensembl

positive regulation of apoptotic process

Inferred from electronic annotation. Source: Ensembl

positive regulation of epithelial cell proliferation

Inferred from electronic annotation. Source: Ensembl

positive regulation of heparan sulfate proteoglycan biosynthetic process

Inferred from mutant phenotype PubMed 15853773. Source: BHF-UCL

positive regulation of insulin secretion

Inferred from direct assay PubMed 18071026. Source: BHF-UCL

positive regulation of protein binding

Inferred from direct assay PubMed 12799378. Source: BHF-UCL

positive regulation of protein export from nucleus

Inferred from mutant phenotype PubMed 19386626. Source: BHF-UCL

positive regulation of protein kinase B signaling

Inferred from mutant phenotype PubMed 19386626. Source: BHF-UCL

positive regulation of transcription from RNA polymerase II promoter

Inferred from direct assay PubMed 19168596Ref.1. Source: BHF-UCL

regulation of hormone metabolic process

Inferred from direct assay PubMed 15525634. Source: BHF-UCL

regulation of insulin secretion involved in cellular response to glucose stimulus

Inferred from electronic annotation. Source: Ensembl

regulation of myelination

Inferred from electronic annotation. Source: Ensembl

regulation of oligodendrocyte differentiation

Inferred from electronic annotation. Source: Ensembl

regulation of skeletal muscle tissue development

Inferred from electronic annotation. Source: Ensembl

regulation of smooth muscle cell proliferation

Inferred from mutant phenotype PubMed 17122440. Source: BHF-UCL

regulation of transcription from RNA polymerase II promoter

Inferred from direct assay Ref.11. Source: BHF-UCL

response to glucose

Inferred from sequence or structural similarity PubMed 19168596. Source: BHF-UCL

secretory granule localization

Inferred from electronic annotation. Source: Ensembl

skin development

Inferred from electronic annotation. Source: Ensembl

somatic stem cell maintenance

Inferred from electronic annotation. Source: Ensembl

transcription, DNA-templated

Inferred from electronic annotation. Source: UniProtKB-KW

   Cellular_componentPML body

Inferred from electronic annotation. Source: UniProtKB-SubCell

beta-catenin-TCF7L2 complex

Inferred from direct assay Ref.1PubMed 9065402. Source: BHF-UCL

cytoplasm

Inferred from direct assay. Source: HPA

nuclear chromatin

Inferred from direct assay Ref.24. Source: BHF-UCL

nucleoplasm

Inferred from direct assay PubMed 19168596. Source: BHF-UCL

nucleus

Inferred from direct assay PubMed 16532032. Source: UniProtKB

protein-DNA complex

Inferred from direct assay PubMed 14661054. Source: BHF-UCL

transcription factor complex

Inferred from Biological aspect of Ancestor. Source: RefGenome

   Molecular_functionRNA polymerase II core promoter proximal region sequence-specific DNA binding

Inferred from direct assay Ref.24. Source: BHF-UCL

RNA polymerase II repressing transcription factor binding

Inferred from physical interaction Ref.24. Source: BHF-UCL

armadillo repeat domain binding

Inferred from physical interaction PubMed 12408825. Source: BHF-UCL

beta-catenin binding

Inferred from direct assay Ref.1. Source: BHF-UCL

chromatin binding

Inferred from Biological aspect of Ancestor. Source: RefGenome

gamma-catenin binding

Inferred from physical interaction PubMed 14661054. Source: BHF-UCL

nuclear hormone receptor binding

Inferred from physical interaction PubMed 12799378. Source: BHF-UCL

protein binding

Inferred from physical interaction Ref.22PubMed 18193033Ref.29Ref.30. Source: UniProtKB

protein kinase binding

Inferred from physical interaction Ref.19. Source: UniProtKB

sequence-specific DNA binding

Inferred from mutant phenotype PubMed 16532032. Source: UniProtKB

sequence-specific DNA binding transcription factor activity

Inferred from direct assay Ref.11. Source: BHF-UCL

transcription factor binding

Inferred from physical interaction PubMed 16007074. Source: BHF-UCL

transcription regulatory region DNA binding

Inferred from direct assay PubMed 20128911. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 17 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q9NQB0-1)

Also known as: TCF-4M;

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q9NQB0-2)

The sequence of this isoform differs from the canonical sequence as follows:
     482-494: RKKKCVRYIQGEG → CKYSKEVSGTVRA
     495-619: Missing.
Isoform 3 (identifier: Q9NQB0-3)

The sequence of this isoform differs from the canonical sequence as follows:
     457-478: DLSAPKKCRARFGLDQQNNWCG → DANTPKKCRALFGLDRQTLWCK
Isoform 4 (identifier: Q9NQB0-4)

The sequence of this isoform differs from the canonical sequence as follows:
     440-456: Missing.
     482-494: RKKKCVRYIQGEG → CKYSKEVSGTVRA
     495-619: Missing.
Isoform 5 (identifier: Q9NQB0-5)

The sequence of this isoform differs from the canonical sequence as follows:
     440-456: Missing.
Isoform 6 (identifier: Q9NQB0-6)

Also known as: TCF-4I;

The sequence of this isoform differs from the canonical sequence as follows:
     457-619: DLSAPKKCRA...PLSLVTKSLE → GEKKSAFATYKVKAAASAHPLQMEAY
Isoform 7 (identifier: Q9NQB0-7)

The sequence of this isoform differs from the canonical sequence as follows:
     440-456: Missing.
     457-478: DLSAPKKCRARFGLDQQNNWCG → DANTPKKCRALFGLDRQTLWCK
Isoform 8 (identifier: Q9NQB0-8)

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
Isoform 9 (identifier: Q9NQB0-9)

Also known as: TCF-4G;

The sequence of this isoform differs from the canonical sequence as follows:
     440-465: EHSECFLNPCLSLPPITDLSAPKKCR → GEKKSAFATYKVKAAASAHPLQMEAY
     466-619: Missing.
Isoform 10 (identifier: Q9NQB0-10)

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     260-263: Missing.
     457-482: DLSAPKKCRARFGLDQQNNWCGPCRR → GEKKSAFATYKVKAAASAHPLQMEAY
     483-619: Missing.
Isoform 11 (identifier: Q9NQB0-11)

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     184-184: V → VSPLPCCTQGHDCQHFYPPSDFTVSTQVFRDMKRSHSLQKVGEPWCIE
     440-465: EHSECFLNPCLSLPPITDLSAPKKCR → GEKKSAFATYKVKAAASAHPLQMEAY
     466-619: Missing.
Isoform 12 (identifier: Q9NQB0-12)

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     481-619: RRKKKCVRYI...PLSLVTKSLE → SL
Note: Low expression in pancreas and colon.
Isoform 13 (identifier: Q9NQB0-13)

Also known as: TCF-4J;

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     440-456: Missing.
     457-478: DLSAPKKCRARFGLDQQNNWCG → DANTPKKCRALFGLDRQTLWCK
Note: Common splicing form, lowest expression in skeletal muscle.
Isoform 14 (identifier: Q9NQB0-14)

Also known as: TCF-4B; short;

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     440-465: EHSECFLNPCLSLPPITDLSAPKKCR → GEKKSAFATYKVKAAASAHPLQMEAY
     466-619: Missing.
Note: High transcriptional activity. Major isoform in liver.
Isoform 15 (identifier: Q9NQB0-15)

Also known as: TCF-4A;

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     290-290: M → MSSFLS
     440-465: EHSECFLNPCLSLPPITDLSAPKKCR → GEKKSAFATYKVKAAASAHPLQMEAY
     466-619: Missing.
Isoform 16 (identifier: Q9NQB0-16)

Also known as: TCF-4K;

The sequence of this isoform differs from the canonical sequence as follows:
     128-150: Missing.
     290-290: M → MSSFLS
     440-456: Missing.
Isoform 17 (identifier: Q9NQB0-17)

Also known as: TCF-4X2;

The sequence of this isoform differs from the canonical sequence as follows:
     1-6: MPQLNG → MSSFLS
     7-290: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 619619Transcription factor 7-like 2
PRO_0000048623

Regions

DNA binding350 – 41869HMG box
Region1 – 5353CTNNB1-binding By similarity
Region201 – 395195Mediates interaction with MAD2L2
Region459 – 50547Promoter-specific activation domain
Motif425 – 4306Nuclear localization signal Potential
Compositional bias178 – 317140Pro-rich

Amino acid modifications

Modified residue2011Phosphothreonine; by NLK Probable
Modified residue2121Phosphothreonine; by NLK Probable
Cross-link320Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO) Ref.16

Natural variations

Alternative sequence1 – 66MPQLNG → MSSFLS in isoform 17.
VSP_053748
Alternative sequence7 – 290284Missing in isoform 17.
VSP_053749
Alternative sequence128 – 15023Missing in isoform 8, isoform 10, isoform 11, isoform 12, isoform 13, isoform 14, isoform 15 and isoform 16.
VSP_006962
Alternative sequence1841V → VSPLPCCTQGHDCQHFYPPS DFTVSTQVFRDMKRSHSLQK VGEPWCIE in isoform 11.
VSP_045821
Alternative sequence260 – 2634Missing in isoform 10.
VSP_006963
Alternative sequence2901M → MSSFLS in isoform 15 and isoform 16.
VSP_053750
Alternative sequence440 – 46526EHSEC…PKKCR → GEKKSAFATYKVKAAASAHP LQMEAY in isoform 9, isoform 11, isoform 14 and isoform 15.
VSP_006965
Alternative sequence440 – 45617Missing in isoform 4, isoform 5, isoform 7, isoform 13 and isoform 16.
VSP_006964
Alternative sequence457 – 619163DLSAP…TKSLE → GEKKSAFATYKVKAAASAHP LQMEAY in isoform 6.
VSP_006967
Alternative sequence457 – 48226DLSAP…GPCRR → GEKKSAFATYKVKAAASAHP LQMEAY in isoform 10.
VSP_006968
Alternative sequence457 – 47822DLSAP…NNWCG → DANTPKKCRALFGLDRQTLW CK in isoform 3, isoform 7 and isoform 13.
VSP_006966
Alternative sequence466 – 619154Missing in isoform 9, isoform 11, isoform 14 and isoform 15.
VSP_006969
Alternative sequence481 – 619139RRKKK…TKSLE → SL in isoform 12.
VSP_045822
Alternative sequence482 – 49413RKKKC…IQGEG → CKYSKEVSGTVRA in isoform 2 and isoform 4.
VSP_006970
Alternative sequence483 – 619137Missing in isoform 10.
VSP_006971
Alternative sequence495 – 619125Missing in isoform 2 and isoform 4.
VSP_006972
Natural variant3461K → N. Ref.2
Corresponds to variant rs2757884 [ dbSNP | Ensembl ].
VAR_047126
Natural variant4651R → C in a colorectal cancer sample; somatic mutation. Ref.35
VAR_035939

Experimental info

Mutagenesis10 – 112DD → AA: Reduces CTNNB1 binding.
Mutagenesis161D → A: Abolishes CTNNB1 binding. Ref.13
Mutagenesis171E → A: Reduces CTNNB1 binding. Ref.13
Mutagenesis191I → A: Reduces transcription activation. Ref.33
Mutagenesis211F → A: Reduces transcription activation. Ref.33
Mutagenesis23 – 242DE → AA: Reduces CTNNB1 binding. Ref.32
Mutagenesis241E → A: Reduces CTNNB1 binding, and abolishes CTNNB1 binding; when associated with A-26; A-28 and A-29. Ref.32
Mutagenesis261E → A: Abolishes CTNNB1 binding; when associated with A-24; A-28 and A-29. Ref.32
Mutagenesis281E → A: Abolishes CTNNB1 binding; when associated with A-24; A-26 and A-29. Ref.32
Mutagenesis291E → A: Reduces CTNNB1 binding, and abolishes CTNNB1 binding; when associated with A-24; A-26 and A-28. Ref.32
Mutagenesis481L → A: Abolishes CTNNB1 binding. Ref.13
Mutagenesis2011T → V: Reduced phosphorylation by NLK and enhanced DNA-binding; when associated with V-212. Ref.18
Mutagenesis2121T → V: Reduced phosphorylation by NLK and enhanced DNA-binding; when associated with V-201. Ref.18
Mutagenesis3201K → R: Loss of sumoylation. No effect on localization to nuclear bodies. Ref.16
Mutagenesis3221E → A: Loss of sumoylation. Ref.16
Sequence conflict118 – 1214NGSL → KRSV in CAB97212. Ref.2
Sequence conflict118 – 1214NGSL → KRSV in CAB97213. Ref.2
Sequence conflict1671Q → R in ADK35180. Ref.4
Sequence conflict2261P → L in ADK35180. Ref.4
Sequence conflict2901M → V in CAA72166. Ref.1
Sequence conflict3311L → H in ACI28527. Ref.3
Sequence conflict5961S → W in CAA72166. Ref.1

Secondary structure

..... 619
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 (TCF-4M) [UniParc].

Last modified March 25, 2003. Version 2.
Checksum: 4DD2D3CC814AE16E

FASTA61967,919
        10         20         30         40         50         60 
MPQLNGGGGD DLGANDELIS FKDEGEQEEK SSENSSAERD LADVKSSLVN ESETNQNSSS 

        70         80         90        100        110        120 
DSEAERRPPP RSESFRDKSR ESLEEAAKRQ DGGLFKGPPY PGYPFIMIPD LTSPYLPNGS 

       130        140        150        160        170        180 
LSPTARTLHF QSGSTHYSAY KTIEHQIAVQ YLQMKWPLLD VQAGSLQSRQ ALKDARSPSP 

       190        200        210        220        230        240 
AHIVSNKVPV VQHPHHVHPL TPLITYSNEH FTPGNPPPHL PADVDPKTGI PRPPHPPDIS 

       250        260        270        280        290        300 
PYYPLSPGTV GQIPHPLGWL VPQQGQPVYP ITTGGFRHPY PTALTVNASM SRFPPHMVPP 

       310        320        330        340        350        360 
HHTLHTTGIP HPAIVTPTVK QESSQSDVGS LHSSKHQDSK KEEEKKKPHI KKPLNAFMLY 

       370        380        390        400        410        420 
MKEMRAKVVA ECTLKESAAI NQILGRRWHA LSREEQAKYY ELARKERQLH MQLYPGWSAR 

       430        440        450        460        470        480 
DNYGKKKKRK RDKQPGETNE HSECFLNPCL SLPPITDLSA PKKCRARFGL DQQNNWCGPC 

       490        500        510        520        530        540 
RRKKKCVRYI QGEGSCLSPP SSDGSLLDSP PPSPNLLGSP PRDAKSQTEQ TQPLSLSLKP 

       550        560        570        580        590        600 
DPLAHLSMMP PPPALLLAEA THKASALCPN GALDLPPAAL QPAAPSSSIA QPSTSSLHSH 

       610 
SSLAGTQPQP LSLVTKSLE 

« Hide

Isoform 2 [UniParc].

Checksum: AC0B8049DF6F4498
Show »

FASTA49455,152
Isoform 3 [UniParc].

Checksum: 6F0250E096854CC0
Show »

FASTA61967,976
Isoform 4 [UniParc].

Checksum: 380199CA672A41A8
Show »

FASTA47753,270
Isoform 5 [UniParc].

Checksum: A52CA392A33AB61C
Show »

FASTA60266,037
Isoform 6 (TCF-4I) [UniParc].

Checksum: B68AD303BF9F3E25
Show »

FASTA48253,676
Isoform 7 [UniParc].

Checksum: 87FC20BEB4F51BB2
Show »

FASTA60266,094
Isoform 8 [UniParc].

Checksum: A022284FEC164B09
Show »

FASTA59665,291
Isoform 9 (TCF-4G) [UniParc].

Checksum: 5E1E47B5DCB132BE
Show »

FASTA46551,794
Isoform 10 [UniParc].

Checksum: 2775B43A2E392581
Show »

FASTA45550,611
Isoform 11 [UniParc].

Checksum: 9817D6DB995CBCD2
Show »

FASTA48954,572
Isoform 12 [UniParc].

Checksum: 59C37C6D178BD813
Show »

FASTA45951,159
Isoform 13 (TCF-4J) [UniParc].

Checksum: B2DEA916F03B0F63
Show »

FASTA57963,466
Isoform 14 (TCF-4B) (short) [UniParc].

Checksum: 57D7E679A87FF4C3
Show »

FASTA44249,166
Isoform 15 (TCF-4A) [UniParc].

Checksum: 1363601E57F2AA39
Show »

FASTA44749,688
Isoform 16 (TCF-4K) [UniParc].

Checksum: 7AA2B6E62420108B
Show »

FASTA58463,930
Isoform 17 (TCF-4X2) [UniParc].

Checksum: 6085EDAAE3D893A5
Show »

FASTA33536,884

References

« Hide 'large scale' references
[1]"Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma."
Korinek V., Barker N., Morin P.J., van Wichen D., de Weger R., Kinzler K.W., Vogelstein B., Clevers H.
Science 275:1784-1787(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 8 AND 9), INTERACTION WITH CTNNB1.
Tissue: Fetus.
[2]"The human T cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines."
Duval A., Rolland S., Tubacher E., Bui H., Thomas G., Hamelin R.
Cancer Res. 60:3872-3879(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] (ISOFORMS 1; 2; 3; 4; 5; 6; 7 AND 9), VARIANT ASN-346.
[3]"Tissue-specific alternative splicing of TCF7L2."
Prokunina-Olsson L., Welch C., Hansson O., Adhikari N., Scott L.J., Usher N., Tong M., Sprau A., Swift A., Bonnycastle L.L., Erdos M.R., He Z., Saxena R., Harmon B., Kotova O., Hoffman E.P., Altshuler D., Groop L. expand/collapse author list , Boehnke M., Collins F.S., Hall J.L.
Hum. Mol. Genet. 18:3795-3804(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 12; 13 AND 14), ALTERNATIVE SPLICING.
Tissue: Brain.
[4]"Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells."
Tsedensodnom O., Koga H., Rosenberg S.A., Nambotin S.B., Carroll J.J., Wands J.R., Kim M.
Exp. Cell Res. 317:920-931(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1; 6; 9; 13; 14; 15 AND 17), ALTERNATIVE SPLICING.
[5]"ALEX1, a putative tumor suppressor, is regulated by CREB-dependent Wnt signaling, and is silenced by promoter methylation in human colorectal cancer."
Iseki H., Takeda A., Andou T., Takahashi N., Ban S., Kurochkin I.V., Okazaki Y., Koyama I.
Submitted (JUN-2008) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 9).
Tissue: Colon.
[6]"Complete sequencing and characterization of 21,243 full-length human cDNAs."
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R., Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H., Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S. expand/collapse author list , Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K., Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S., Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O., Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H., Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B., Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R., Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.
Nat. Genet. 36:40-45(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 14).
[7]"The DNA sequence and comparative analysis of human chromosome 10."
Deloukas P., Earthrowl M.E., Grafham D.V., Rubenfield M., French L., Steward C.A., Sims S.K., Jones M.C., Searle S., Scott C., Howe K., Hunt S.E., Andrews T.D., Gilbert J.G.R., Swarbreck D., Ashurst J.L., Taylor A., Battles J. expand/collapse author list , Bird C.P., Ainscough R., Almeida J.P., Ashwell R.I.S., Ambrose K.D., Babbage A.K., Bagguley C.L., Bailey J., Banerjee R., Bates K., Beasley H., Bray-Allen S., Brown A.J., Brown J.Y., Burford D.C., Burrill W., Burton J., Cahill P., Camire D., Carter N.P., Chapman J.C., Clark S.Y., Clarke G., Clee C.M., Clegg S., Corby N., Coulson A., Dhami P., Dutta I., Dunn M., Faulkner L., Frankish A., Frankland J.A., Garner P., Garnett J., Gribble S., Griffiths C., Grocock R., Gustafson E., Hammond S., Harley J.L., Hart E., Heath P.D., Ho T.P., Hopkins B., Horne J., Howden P.J., Huckle E., Hynds C., Johnson C., Johnson D., Kana A., Kay M., Kimberley A.M., Kershaw J.K., Kokkinaki M., Laird G.K., Lawlor S., Lee H.M., Leongamornlert D.A., Laird G., Lloyd C., Lloyd D.M., Loveland J., Lovell J., McLaren S., McLay K.E., McMurray A., Mashreghi-Mohammadi M., Matthews L., Milne S., Nickerson T., Nguyen M., Overton-Larty E., Palmer S.A., Pearce A.V., Peck A.I., Pelan S., Phillimore B., Porter K., Rice C.M., Rogosin A., Ross M.T., Sarafidou T., Sehra H.K., Shownkeen R., Skuce C.D., Smith M., Standring L., Sycamore N., Tester J., Thorpe A., Torcasso W., Tracey A., Tromans A., Tsolas J., Wall M., Walsh J., Wang H., Weinstock K., West A.P., Willey D.L., Whitehead S.L., Wilming L., Wray P.W., Young L., Chen Y., Lovering R.C., Moschonas N.K., Siebert R., Fechtel K., Bentley D., Durbin R.M., Hubbard T., Doucette-Stamm L., Beck S., Smith D.R., Rogers J.
Nature 429:375-381(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[8]Mural R.J., Istrail S., Sutton G., Florea L., Halpern A.L., Mobarry C.M., Lippert R., Walenz B., Shatkay H., Dew I., Miller J.R., Flanigan M.J., Edwards N.J., Bolanos R., Fasulo D., Halldorsson B.V., Hannenhalli S., Turner R. expand/collapse author list , Yooseph S., Lu F., Nusskern D.R., Shue B.C., Zheng X.H., Zhong F., Delcher A.L., Huson D.H., Kravitz S.A., Mouchard L., Reinert K., Remington K.A., Clark A.G., Waterman M.S., Eichler E.E., Adams M.D., Hunkapiller M.W., Myers E.W., Venter J.C.
Submitted (SEP-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[9]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 10).
Tissue: Uterus.
[10]"Human TCF-4 splice form B."
Saeki H., Tanaka S., Sugimachi K.
Submitted (NOV-1999) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 449-494.
Tissue: Gastric carcinoma.
[11]"Identification of c-MYC as a target of the APC pathway."
He T.-C., Sparks A.B., Rago C., Hermeking H., Zawel L., da Costa L.T., Morin P.J., Vogelstein B., Kinzler K.W.
Science 281:1509-1512(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[12]"Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium."
Barker N., Huls G., Korinek V., Clevers H.
Am. J. Pathol. 154:29-35(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: TISSUE SPECIFICITY, INTERACTION WITH CTNNB1, SUBCELLULAR LOCATION.
[13]"Identification of Tcf4 residues involved in high-affinity beta-catenin binding."
Omer C.A., Miller P.J., Diehl R.E., Kral A.M.
Biochem. Biophys. Res. Commun. 256:584-590(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CTNNB1, MUTAGENESIS OF 10-ASP-ASP-11; ASP-16; GLU-17; 23-ASP-GLU-24 AND LEU-48.
[14]"All Tcf HMG box transcription factors interact with Groucho-related co-repressors."
Brantjes H., Roose J., van De Wetering M., Clevers H.
Nucleic Acids Res. 29:1410-1419(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TLE1; TLE2; TLE3 AND TLE4.
[15]"The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells."
van de Wetering M., Sancho E., Verweij C., de Lau W., Oving I., Hurlstone A., van der Horn K., Batlle E., Coudreuse D., Haramis A.-P., Tjon-Pon-Fong M., Moerer P., van den Born M., Soete G., Pals S., Eilers M., Medema R., Clevers H.
Cell 111:241-250(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[16]"Sumoylation is involved in beta-catenin-dependent activation of Tcf-4."
Yamamoto H., Ihara M., Matsuura Y., Kikuchi A.
EMBO J. 22:2047-2059(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: SUMOYLATION AT LYS-320, INTERACTION WITH PIAS4, FUNCTION, SUBCELLULAR LOCATION, MUTAGENESIS OF LYS-320 AND GLU-322.
[17]"Identification of a promoter-specific transcriptional activation domain at the C-terminus of the Wnt effector protein T-cell factor 4."
Hecht A., Stemmler M.P.
J. Biol. Chem. 278:3776-3785(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH EP300.
[18]"Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling."
Ishitani T., Ninomiya-Tsuji J., Matsumoto K.
Mol. Cell. Biol. 23:1379-1389(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NLK, PHOSPHORYLATION AT THR-201 AND/OR THR-212 BY NLK, MUTAGENESIS OF THR-201 AND THR-212.
[19]"NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF)."
Yamada M., Ohnishi J., Ohkawara B., Iemura S., Satoh K., Hyodo-Miura J., Kawachi K., Natsume T., Shibuya H.
J. Biol. Chem. 281:20749-20760(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NLK.
[20]"Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes."
Grant S.F.A., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., Helgason A., Stefansson H., Emilsson V., Helgadottir A., Styrkarsdottir U., Magnusson K.P., Walters G.B., Palsdottir E., Jonsdottir T., Gudmundsdottir T., Gylfason A., Saemundsdottir J. expand/collapse author list , Wilensky R.L., Reilly M.P., Rader D.J., Bagger Y., Christiansen C., Gudnason V., Sigurdsson G., Thorsteinsdottir U., Gulcher J.R., Kong A., Stefansson K.
Nat. Genet. 38:320-323(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INVOLVEMENT IN NIDDM.
[21]"The C/EBP homologous protein CHOP (GADD153) is an inhibitor of Wnt/TCF signals."
Horndasch M., Lienkamp S., Springer E., Schmitt A., Pavenstaedt H., Walz G., Gloy J.
Oncogene 25:3397-3407(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH DDIT3.
[22]"Coiled-coil domain containing 85B suppresses the beta-catenin activity in a p53-dependent manner."
Iwai A., Hijikata M., Hishiki T., Isono O., Chiba T., Shimotohno K.
Oncogene 27:1520-1526(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH CCDC85B.
[23]"The kinase TNIK is an essential activator of Wnt target genes."
Mahmoudi T., Li V.S.W., Ng S.S., Taouatas N., Vries R.G.J., Mohammed S., Heck A.J., Clevers H.
EMBO J. 28:3329-3340(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TNIK AND CTNNB1.
[24]"MAD2B, a novel TCF4-binding protein, modulates TCF4-mediated epithelial-mesenchymal transdifferentiation."
Hong C.F., Chou Y.T., Lin Y.S., Wu C.W.
J. Biol. Chem. 284:19613-19622(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH MAD2L2.
[25]"Zipper-interacting protein kinase (ZIPK) modulates canonical Wnt/beta-catenin signaling through interaction with Nemo-like kinase and T-cell factor 4 (NLK/TCF4)."
Togi S., Ikeda O., Kamitani S., Nakasuji M., Sekine Y., Muromoto R., Nanbo A., Oritani K., Kawai T., Akira S., Matsuda T.
J. Biol. Chem. 286:19170-19177(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NLK AND ZIPK/DAPK3.
[26]"Kindlin 2 forms a transcriptional complex with beta-catenin and TCF4 to enhance Wnt signalling."
Yu Y., Wu J., Wang Y., Zhao T., Ma B., Liu Y., Fang W., Zhu W.G., Zhang H.
EMBO Rep. 13:750-758(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, IDENTIFICATION IN A COMPLEX WITH FERMT2 AND CTNNB1, SUBCELLULAR LOCATION.
[27]"Beta-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells."
Satow R., Shitashige M., Jigami T., Fukami K., Honda K., Kitabayashi I., Yamada T.
Gastroenterology 142:572-581(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PML.
[28]"SPINDLIN1 promotes cancer cell proliferation through activation of WNT/TCF-4 signaling."
Wang J.X., Zeng Q., Chen L., Du J.C., Yan X.L., Yuan H.F., Zhai C., Zhou J.N., Jia Y.L., Yue W., Pei X.T.
Mol. Cancer Res. 10:326-335(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SPIN1.
[29]"XIAP monoubiquitylates Groucho/TLE to promote canonical Wnt signaling."
Hanson A.J., Wallace H.A., Freeman T.J., Beauchamp R.D., Lee L.A., Lee E.
Mol. Cell 45:619-628(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH XIAP/BIRC4 AND TLE3.
[30]"Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1."
Su X., Zhu G., Ding X., Lee S.Y., Dou Y., Zhu B., Wu W., Li H.
Genes Dev. 28:622-636(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SPIN1.
[31]"Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico."
The SIGMA Type 2 Diabetes Consortium
Nature 506:97-101(2014) [PubMed] [Europe PMC] [Abstract]
Cited for: INVOLVEMENT IN NIDDM.
[32]"Tcf4 can specifically recognize beta-catenin using alternative conformations."
Graham T.A., Ferkey D.M., Mao F., Kimelman D., Xu W.
Nat. Struct. Biol. 8:1048-1052(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (1.9 ANGSTROMS) OF 12-49 IN COMPLEX WITH THE ARMADILLO REPEAT REGION OF CTNNB1, MUTAGENESIS OF GLU-24; GLU-26; GLU-28 AND GLU-29.
[33]"Structure of a human Tcf4-beta-catenin complex."
Poy F., Lepourcelet M., Shivdasani R.A., Eck M.J.
Nat. Struct. Biol. 8:1053-1057(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS) OF 8-54 IN COMPLEX WITH THE ARMADILLO REPEAT REGION OF CTNNB1, MUTAGENESIS OF ILE-19 AND PHE-21.
[34]"Crystal structure of a beta-catenin/BCL9/Tcf4 complex."
Sampietro J., Dahlberg C.L., Cho U.S., Hinds T.R., Kimelman D., Xu W.
Mol. Cell 24:293-300(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.60 ANGSTROMS) OF 1-53 IN COMPLEX WITH BCL9 AND CTNNB1, INTERACTION WITH CTNNB1.
[35]"The consensus coding sequences of human breast and colorectal cancers."
Sjoeblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K.V. expand/collapse author list , Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W., Velculescu V.E.
Science 314:268-274(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANT [LARGE SCALE ANALYSIS] CYS-465.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
Y11306 mRNA. Translation: CAA72166.2.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270776, AJ270778 Genomic DNA. Translation: CAB97212.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270776, AJ270778 Genomic DNA. Translation: CAB97213.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270777, AJ270778 Genomic DNA. Translation: CAB97214.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270777, AJ270778 Genomic DNA. Translation: CAB97215.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270778 Genomic DNA. Translation: CAB97216.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270778 Genomic DNA. Translation: CAB97217.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270776, AJ270777 Genomic DNA. Translation: CAB97218.1.
AJ270770 expand/collapse EMBL AC list , AJ270771, AJ270772, AJ270773, AJ270774, AJ270775, AJ270776, AJ270777 Genomic DNA. Translation: CAB97219.1.
FJ010167 mRNA. Translation: ACI28525.1.
FJ010169 mRNA. Translation: ACI28527.1.
FJ010172 mRNA. Translation: ACI28530.1.
HM352839 mRNA. Translation: ADK35175.1.
HM352842 mRNA. Translation: ADK35178.1.
HM352844 mRNA. Translation: ADK35180.1.
HM352845 mRNA. Translation: ADK35187.1.
HM352846 mRNA. Translation: ADK35181.1.
HM352847 mRNA. Translation: ADK35182.1.
HM352849 mRNA. Translation: ADK35184.1.
HM352850 mRNA. Translation: ADK35185.1.
AB440195 mRNA. Translation: BAH24004.1.
AK299295 mRNA. Translation: BAG61310.1.
AL135792 Genomic DNA. No translation available.
AL158212 Genomic DNA. No translation available.
AL445486 Genomic DNA. No translation available.
AL451084 Genomic DNA. No translation available.
CH471066 Genomic DNA. Translation: EAW49513.1.
CH471066 Genomic DNA. Translation: EAW49515.1.
CH471066 Genomic DNA. Translation: EAW49516.1.
BC032656 mRNA. Translation: AAH32656.1.
AB034691 mRNA. Translation: BAA86225.1.
CCDSCCDS53577.1. [Q9NQB0-7]
CCDS53578.1. [Q9NQB0-11]
CCDS55729.1. [Q9NQB0-12]
CCDS7576.1. [Q9NQB0-8]
PIRS22807.
RefSeqNP_001139746.1. NM_001146274.1. [Q9NQB0-7]
NP_001139755.1. NM_001146283.1. [Q9NQB0-11]
NP_001139756.1. NM_001146284.1. [Q9NQB0-10]
NP_001139758.1. NM_001146286.1. [Q9NQB0-14]
NP_001185455.1. NM_001198526.1. [Q9NQB0-13]
NP_001185457.1. NM_001198528.1. [Q9NQB0-12]
NP_001185460.1. NM_001198531.1. [Q9NQB0-9]
XP_005270141.1. XM_005270084.1. [Q9NQB0-1]
XP_005270146.1. XM_005270089.1.
XP_005270153.1. XM_005270096.1. [Q9NQB0-6]
XP_005270160.1. XM_005270103.1. [Q9NQB0-15]
UniGeneHs.593995.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
1JDHX-ray1.90B12-49[»]
1JPWX-ray2.50D/E/F6-54[»]
2GL7X-ray2.60B/E1-53[»]
DisProtDP00175.
ProteinModelPortalQ9NQB0.
SMRQ9NQB0. Positions 12-49, 349-424.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid112795. 22 interactions.
DIPDIP-36236N.
IntActQ9NQB0. 32 interactions.
MINTMINT-222146.

Chemistry

ChEMBLCHEMBL3038511.

PTM databases

PhosphoSiteQ9NQB0.

Polymorphism databases

DMDM29337146.

Proteomic databases

MaxQBQ9NQB0.
PaxDbQ9NQB0.
PRIDEQ9NQB0.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000352065; ENSP00000344823; ENSG00000148737. [Q9NQB0-12]
ENST00000355717; ENSP00000347949; ENSG00000148737. [Q9NQB0-11]
ENST00000355995; ENSP00000348274; ENSG00000148737. [Q9NQB0-1]
ENST00000369397; ENSP00000358404; ENSG00000148737. [Q9NQB0-8]
ENST00000534894; ENSP00000443626; ENSG00000148737. [Q9NQB0-2]
ENST00000536810; ENSP00000446238; ENSG00000148737. [Q9NQB0-5]
ENST00000538897; ENSP00000446172; ENSG00000148737. [Q9NQB0-6]
ENST00000542695; ENSP00000443883; ENSG00000148737.
ENST00000543371; ENSP00000444972; ENSG00000148737. [Q9NQB0-7]
ENST00000545257; ENSP00000440547; ENSG00000148737. [Q9NQB0-3]
GeneID6934.
KEGGhsa:6934.
UCSCuc001lad.4. human. [Q9NQB0-10]
uc001lae.4. human. [Q9NQB0-7]
uc021pyi.1. human. [Q9NQB0-1]
uc021pyj.1. human. [Q9NQB0-6]

Organism-specific databases

CTD6934.
GeneCardsGC10P114710.
HGNCHGNC:11641. TCF7L2.
HPACAB013535.
HPA038800.
MIM125853. phenotype.
602228. gene.
neXtProtNX_Q9NQB0.
PharmGKBPA36394.
GenAtlasSearch...

Phylogenomic databases

eggNOGNOG252916.
HOVERGENHBG000419.
KOK04491.
OMAEPWCLES.
OrthoDBEOG7QNVMG.
PhylomeDBQ9NQB0.
TreeFamTF318448.

Enzyme and pathway databases

ReactomeREACT_111102. Signal Transduction.
SignaLinkQ9NQB0.

Gene expression databases

ArrayExpressQ9NQB0.
BgeeQ9NQB0.
CleanExHS_TCF4.
GenevestigatorQ9NQB0.

Family and domain databases

Gene3D1.10.30.10. 1 hit.
4.10.900.10. 1 hit.
InterProIPR027397. Catenin_binding_dom.
IPR013558. CTNNB1-bd_N.
IPR009071. HMG_box_dom.
IPR024940. TCF/LEF.
IPR028773. TCF7L2.
[Graphical view]
PANTHERPTHR10373. PTHR10373. 1 hit.
PTHR10373:SF32. PTHR10373:SF32. 1 hit.
PfamPF08347. CTNNB1_binding. 1 hit.
PF00505. HMG_box. 1 hit.
[Graphical view]
SMARTSM00398. HMG. 1 hit.
[Graphical view]
SUPFAMSSF47095. SSF47095. 1 hit.
PROSITEPS50118. HMG_BOX_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSTCF7L2. human.
EvolutionaryTraceQ9NQB0.
GeneWikiTCF7L2.
GenomeRNAi6934.
NextBio27133.
PROQ9NQB0.
SOURCESearch...

Entry information

Entry nameTF7L2_HUMAN
AccessionPrimary (citable) accession number: Q9NQB0
Secondary accession number(s): B4DRJ8 expand/collapse secondary AC list , B9X074, C6ZRJ8, C6ZRK0, E2GH14, E2GH19, E2GH20, E2GH24, E2GH25, E9PFH9, F8W742, F8W7T5, O00185, Q9NQB1, Q9NQB2, Q9NQB3, Q9NQB4, Q9NQB5, Q9NQB6, Q9NQB7, Q9ULC2
Entry history
Integrated into UniProtKB/Swiss-Prot: March 25, 2003
Last sequence update: March 25, 2003
Last modified: July 9, 2014
This is version 147 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 10

Human chromosome 10: entries, gene names and cross-references to MIM