Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Q9JLN9

- MTOR_MOUSE

UniProt

Q9JLN9 - MTOR_MOUSE

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Serine/threonine-protein kinase mTOR

Gene

Mtor

Organism
Mus musculus (Mouse)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422'.9 Publications

Catalytic activityi

ATP + a protein = ADP + a phosphoprotein.

Enzyme regulationi

Activation of mTORC1 by growth factors such as insulin involves AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase a potent activator of the protein kinase activity of mTORC1. Insulin-stimulated and amino acid-dependent phosphorylation at Ser-1261 promotes autophosphorylation and the activation of mTORC1. Activation by amino acids requires relocalization of the mTORC1 complex to lysosomes that is mediated by the Ragulator complex and the Rag GTPases RRAGA, RRAGB, RRAGC and RRAGD. On the other hand, low cellular energy levels can inhibit mTORC1 through activation of PRKAA1 while hypoxia inhibits mTORC1 through a REDD1-dependent mechanism which may also require PRKAA1. The kinase activity of MTOR within the mTORC1 complex is positively regulated by MLST8 and negatively regulated by DEPTOR and AKT1S1. MTOR phosphorylates RPTOR which in turn inhibits mTORC1. MTOR is the target of the immunosuppressive and anti-cancer drug rapamycin which acts in complex with FKBP1A/FKBP12, and specifically inhibits its kinase activity. mTORC2 is also activated by growth factors, but seems to be nutrient-insensitive. It may be regulated by RHEB but in an indirect manner through the PI3K signaling pathway.2 Publications

GO - Molecular functioni

  1. ATP binding Source: UniProtKB-KW
  2. drug binding Source: InterPro
  3. kinase activity Source: MGI
  4. protein serine/threonine kinase activity Source: UniProtKB
  5. ribosome binding Source: UniProtKB
  6. RNA polymerase III type 1 promoter DNA binding Source: Ensembl
  7. RNA polymerase III type 2 promoter DNA binding Source: Ensembl
  8. RNA polymerase III type 3 promoter DNA binding Source: Ensembl

GO - Biological processi

  1. cell projection organization Source: MGI
  2. cellular response to hypoxia Source: UniProtKB
  3. cellular response to nutrient levels Source: UniProtKB
  4. germ cell development Source: MGI
  5. negative regulation of autophagy Source: UniProtKB
  6. negative regulation of cell size Source: MGI
  7. negative regulation of macroautophagy Source: MGI
  8. negative regulation of NFAT protein import into nucleus Source: MGI
  9. peptidyl-serine phosphorylation Source: MGI
  10. peptidyl-threonine phosphorylation Source: MGI
  11. positive regulation of actin filament polymerization Source: MGI
  12. positive regulation of endothelial cell proliferation Source: Ensembl
  13. positive regulation of lamellipodium assembly Source: MGI
  14. positive regulation of lipid biosynthetic process Source: UniProtKB
  15. positive regulation of myotube differentiation Source: MGI
  16. positive regulation of peptidyl-tyrosine phosphorylation Source: MGI
  17. positive regulation of protein kinase B signaling Source: Ensembl
  18. positive regulation of stress fiber assembly Source: MGI
  19. positive regulation of transcription from RNA polymerase III promoter Source: Ensembl
  20. positive regulation of translation Source: Ensembl
  21. protein autophosphorylation Source: MGI
  22. protein phosphorylation Source: MGI
  23. regulation of carbohydrate utilization Source: Ensembl
  24. regulation of fatty acid beta-oxidation Source: Ensembl
  25. regulation of glycogen biosynthetic process Source: Ensembl
  26. regulation of myelination Source: MGI
  27. regulation of protein kinase activity Source: MGI
  28. regulation of Rac GTPase activity Source: MGI
  29. regulation of response to food Source: Ensembl
  30. response to amino acid Source: MGI
  31. response to insulin Source: MGI
  32. ruffle organization Source: MGI
  33. TOR signaling Source: Ensembl
Complete GO annotation...

Keywords - Molecular functioni

Kinase, Serine/threonine-protein kinase, Transferase

Keywords - Ligandi

ATP-binding, Nucleotide-binding

Enzyme and pathway databases

ReactomeiREACT_196588. Constitutive PI3K/AKT Signaling in Cancer.
REACT_213550. HSF1-dependent transactivation.
REACT_226151. CD28 dependent PI3K/Akt signaling.
REACT_226341. PIP3 activates AKT signaling.

Names & Taxonomyi

Protein namesi
Recommended name:
Serine/threonine-protein kinase mTOR (EC:2.7.11.1)
Alternative name(s):
FK506-binding protein 12-rapamycin complex-associated protein 1
FKBP12-rapamycin complex-associated protein
Mammalian target of rapamycin
Short name:
mTOR
Mechanistic target of rapamycin
Rapamycin target protein 1
Short name:
RAPT1
Gene namesi
Name:Mtor
Synonyms:Frap, Frap1
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
ProteomesiUP000000589: Chromosome 4

Organism-specific databases

MGIiMGI:1928394. Mtor.

Subcellular locationi

Endoplasmic reticulum membrane By similarity; Peripheral membrane protein By similarity; Cytoplasmic side By similarity. Golgi apparatus membrane By similarity; Peripheral membrane protein By similarity; Cytoplasmic side By similarity. Mitochondrion outer membrane; Peripheral membrane protein; Cytoplasmic side. Lysosome By similarity. Cytoplasm. NucleusPML body
Note: Shuttles between cytoplasm and nucleus. Accumulates in the nucleus in response to hypoxia. Targeting to lysosomes depends on amino acid availability and RRAGA and RRAGB (By similarity).By similarity

GO - Cellular componenti

  1. cytoplasm Source: UniProtKB
  2. cytosol Source: UniProtKB
  3. dendrite Source: MGI
  4. endoplasmic reticulum Source: UniProtKB-KW
  5. Golgi apparatus Source: UniProtKB-KW
  6. lysosomal membrane Source: Ensembl
  7. lysosome Source: UniProtKB
  8. mitochondrial outer membrane Source: UniProtKB-KW
  9. nucleus Source: MGI
  10. TORC1 complex Source: MGI
  11. TORC2 complex Source: MGI
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Endoplasmic reticulum, Golgi apparatus, Lysosome, Membrane, Mitochondrion, Mitochondrion outer membrane, Nucleus

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi2035 – 20351S → R: Abolishes interaction with the FKBP1A-rapamycin complex. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 25492549Serine/threonine-protein kinase mTORPRO_0000088809Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei1 – 11N-acetylmethionineBy similarity
Modified residuei567 – 5671PhosphoserineBy similarity
Modified residuei1162 – 11621PhosphothreonineBy similarity
Modified residuei1218 – 12181N6-acetyllysineBy similarity
Modified residuei1261 – 12611Phosphoserine1 Publication
Modified residuei2159 – 21591PhosphoserineBy similarity
Modified residuei2164 – 21641PhosphothreonineBy similarity
Modified residuei2173 – 21731Phosphothreonine; by PKB/AKT1By similarity
Modified residuei2446 – 24461Phosphothreonine; by RPS6KB1By similarity
Modified residuei2448 – 24481Phosphoserine; by RPS6KB1By similarity
Modified residuei2478 – 24781Phosphoserine1 Publication
Modified residuei2481 – 24811Phosphoserine; alternate1 Publication
Modified residuei2481 – 24811Phosphoserine; by autocatalysis; alternateBy similarity

Post-translational modificationi

Phosphorylation at Thr-2173 in the ATP-binding region by AKT1 strongly reduces kinase activity (By similarity). Autophosphorylates when part of mTORC1 or mTORC2. Phosphorylation at Ser-1261, Ser-2159 and Thr-2164 promotes autophosphorylation. Phosphorylation in the kinase domain modulates the interactions of MTOR with RPTOR and PRAS40 and leads to increased intrinsic mTORC1 kinase activity.By similarity3 Publications

Keywords - PTMi

Acetylation, Phosphoprotein

Proteomic databases

MaxQBiQ9JLN9.
PaxDbiQ9JLN9.
PRIDEiQ9JLN9.

PTM databases

PhosphoSiteiQ9JLN9.

Expressioni

Gene expression databases

BgeeiQ9JLN9.
GenevestigatoriQ9JLN9.

Interactioni

Subunit structurei

Part of the mammalian target of rapamycin complex 1 (mTORC1) which contains MTOR, MLST8, RPTOR, AKT1S1/PRAS40 and DEPTOR. The mTORC1 complex is a 1 Md obligate dimer of two stoichiometric heterotetramers with overall dimensions of 290 A x 210 A x 135 A. It has a rhomboid shape and a central cavity, the dimeric interfaces are formed by interlocking interactions between the two MTOR and the two RPTOR subunits. the MLST8 subunits forms distal foot-like protuberances, and contacts only one MTOR within the complex, while the small PRAS40 localizes to the midsection of the central core, in close proximity to RPTOR. Part of the mammalian target of rapamycin COmplex 2 (mTORC2) which contains MTOR, MLST8, PRR5, RICTOR, MAPKAP1 and DEPTOR. Interacts with PPAPDC3 and PML. Interacts with PRR5 and RICTOR; the interaction is direct within the mTORC2 complex. Interacts with UBQLN1. Interacts with TTI1 and TELO2. Interacts with CLIP1; phosphorylates and regulates CLIP1. Interacts with NBN.6 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
Eif3fQ9DCH45EBI-1571628,EBI-1634316
EIF4EBP1Q135412EBI-1571628,EBI-74090From a different organism.
RictorQ6QI068EBI-1571628,EBI-4286572
RPTORQ8N1225EBI-1571628,EBI-1567928From a different organism.
RptorQ8K4Q06EBI-1571628,EBI-4567273

Protein-protein interaction databases

BioGridi208142. 13 interactions.
DIPiDIP-40570N.
IntActiQ9JLN9. 20 interactions.
MINTiMINT-1899010.
STRINGi10090.ENSMUSP00000099510.

Structurei

3D structure databases

ProteinModelPortaliQ9JLN9.
SMRiQ9JLN9. Positions 2025-2422, 2517-2549.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Repeati16 – 5338HEAT 1Add
BLAST
Repeati55 – 9945HEAT 2Add
BLAST
Repeati100 – 13738HEAT 3Add
BLAST
Repeati138 – 17942HEAT 4Add
BLAST
Repeati180 – 22041HEAT 5Add
BLAST
Repeati222 – 27655HEAT 6Add
BLAST
Repeati277 – 31337HEAT 7Add
BLAST
Repeati314 – 36451HEAT 8Add
BLAST
Repeati365 – 40945HEAT 9Add
BLAST
Repeati410 – 44536HEAT 10Add
BLAST
Repeati446 – 49449HEAT 11Add
BLAST
Repeati495 – 52935HEAT 12Add
BLAST
Repeati530 – 56334HEAT 13Add
BLAST
Repeati564 – 59633HEAT 14Add
BLAST
Repeati597 – 63640HEAT 15Add
BLAST
Repeati637 – 68347HEAT 16Add
BLAST
Repeati686 – 72439HEAT 17Add
BLAST
Repeati727 – 76640HEAT 18Add
BLAST
Repeati769 – 81143HEAT 19Add
BLAST
Repeati814 – 85340HEAT 20Add
BLAST
Repeati857 – 89337HEAT 21Add
BLAST
Repeati894 – 94249HEAT 22Add
BLAST
Repeati943 – 98846HEAT 23Add
BLAST
Repeati989 – 102739HEAT 24Add
BLAST
Repeati1029 – 106840HEAT 25Add
BLAST
Repeati1069 – 110537HEAT 26Add
BLAST
Repeati1106 – 114439HEAT 27Add
BLAST
Repeati1145 – 118844HEAT 28Add
BLAST
Repeati1189 – 122537HEAT 29Add
BLAST
Repeati1226 – 127348HEAT 30Add
BLAST
Repeati1274 – 131138HEAT 31Add
BLAST
Repeati1312 – 134534HEAT 32Add
BLAST
Repeati1346 – 138237TPR 1Add
BLAST
Domaini1382 – 1982601FATPROSITE-ProRule annotationAdd
BLAST
Repeati1383 – 140826TPR 2Add
BLAST
Repeati1409 – 144234TPR 3Add
BLAST
Repeati1443 – 147331TPR 4Add
BLAST
Repeati1474 – 150734TPR 5Add
BLAST
Repeati1508 – 154134TPR 6Add
BLAST
Repeati1542 – 157433TPR 7Add
BLAST
Repeati1575 – 161440TPR 8Add
BLAST
Repeati1615 – 164935TPR 9Add
BLAST
Repeati1650 – 169344TPR 10Add
BLAST
Repeati1694 – 173138TPR 11Add
BLAST
Repeati1732 – 178655TPR 12Add
BLAST
Repeati1787 – 184660TPR 13Add
BLAST
Repeati1898 – 193033TPR 14Add
BLAST
Repeati1931 – 197040TPR 15Add
BLAST
Repeati1971 – 200535TPR 16Add
BLAST
Domaini2182 – 2516335PI3K/PI4KPROSITE-ProRule annotationAdd
BLAST
Domaini2517 – 254933FATCPROSITE-ProRule annotationAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni1 – 651651Interaction with NBNBy similarityAdd
BLAST
Regioni2012 – 2144133Sufficient for interaction with the FKBP1A/rapamycin complexAdd
BLAST
Regioni2258 – 229639Interaction with MLST8By similarityAdd
BLAST

Domaini

The kinase domain (PI3K/PI4K) is intrinsically active but has a highly restricted catalytic center.By similarity
The FAT domain forms three discontinuous subdomains of alpha-helical TPR repeats plus a single subdomain of HEAT repeats. The four domains pack sequentially to form a C-shaped a-solenoid that clamps onto the kinase domain (By similarity).By similarity

Sequence similaritiesi

Belongs to the PI3/PI4-kinase family.Curated
Contains 1 FAT domain.PROSITE-ProRule annotation
Contains 1 FATC domain.PROSITE-ProRule annotation
Contains 32 HEAT repeats.Curated
Contains 1 PI3K/PI4K domain.PROSITE-ProRule annotation
Contains 16 TPR repeats.Curated

Keywords - Domaini

Repeat, TPR repeat

Phylogenomic databases

eggNOGiCOG5032.
GeneTreeiENSGT00760000119382.
HOGENOMiHOG000163215.
HOVERGENiHBG005744.
InParanoidiQ9JLN9.
KOiK07203.
OMAiTYKQNIG.
OrthoDBiEOG7CCBQ4.
PhylomeDBiQ9JLN9.
TreeFamiTF105134.

Family and domain databases

Gene3Di1.10.1070.11. 3 hits.
1.20.120.150. 1 hit.
1.25.10.10. 4 hits.
1.25.40.10. 2 hits.
InterProiIPR011989. ARM-like.
IPR016024. ARM-type_fold.
IPR024585. DUF3385_TOR.
IPR003152. FATC.
IPR011009. Kinase-like_dom.
IPR000403. PI3/4_kinase_cat_dom.
IPR018936. PI3/4_kinase_CS.
IPR003151. PIK-rel_kinase_FAT.
IPR014009. PIK_FAT.
IPR009076. Rapamycin-bd_dom.
IPR011990. TPR-like_helical_dom.
[Graphical view]
PfamiPF11865. DUF3385. 1 hit.
PF02259. FAT. 1 hit.
PF02260. FATC. 1 hit.
PF00454. PI3_PI4_kinase. 1 hit.
PF08771. Rapamycin_bind. 1 hit.
[Graphical view]
SMARTiSM00146. PI3Kc. 1 hit.
[Graphical view]
SUPFAMiSSF47212. SSF47212. 1 hit.
SSF48371. SSF48371. 5 hits.
SSF56112. SSF56112. 2 hits.
PROSITEiPS51189. FAT. 1 hit.
PS51190. FATC. 1 hit.
PS00915. PI3_4_KINASE_1. 1 hit.
PS00916. PI3_4_KINASE_2. 1 hit.
PS50290. PI3_4_KINASE_3. 1 hit.
[Graphical view]

Sequences (2)i

Sequence statusi: Complete.

This entry describes 2 isoformsi produced by alternative splicing. Align

Isoform 1 (identifier: Q9JLN9) [UniParc]FASTAAdd to Basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MLGTGPAVAT ASAATSSNVS VLQQFASGLK SRNEETRAKA AKELQHYVTM
60 70 80 90 100
ELREMSQEES TRFYDQLNHH IFELVSSSDA NERKGGILAI ASLIGVEGGN
110 120 130 140 150
STRIGRFANY LRNLLPSSDP VVMEMASKAI GRLAMAGDTF TAEYVEFEVK
160 170 180 190 200
RALEWLGADR NEGRRHAAVL VLRELAISVP TFFFQQVQPF FDNIFVAVWD
210 220 230 240 250
PKQAIREGAV AALRACLILT TQREPKEMQK PQWYRHTFEE AEKGFDETLA
260 270 280 290 300
KEKGMNRDDR IHGALLILNE LVRISSMEGE RLREEMEEIT QQQLVHDKYC
310 320 330 340 350
KDLMGFGTKP RHITPFTSFQ AVQPQQPNAL VGLLGYSSPQ GLMGFGTSPS
360 370 380 390 400
PAKSTLVESR CCRDLMEEKF DQVCQWVLKC RSSKNSLIQM TILNLLPRLA
410 420 430 440 450
AFRPSAFTDT QYLQDTMNHV LSCVKKEKER TAAFQALGLL SVAVRSEFKV
460 470 480 490 500
YLPRVLDIIR AALPPKDFAH KRQKTVQVDA TVFTCISMLA RAMGPGIQQD
510 520 530 540 550
IKELLEPMLA VGLSPALTAV LYDLSRQIPQ LKKDIQDGLL KMLSLVLMHK
560 570 580 590 600
PLRHPGMPKG LAHQLASPGL TTLPEASDVA SITLALRTLG SFEFEGHSLT
610 620 630 640 650
QFVRHCADHF LNSEHKEIRM EAARTCSRLL TPSIHLISGH AHVVSQTAVQ
660 670 680 690 700
VVADVLSKLL VVGITDPDPD IRYCVLASLD ERFDAHLAQA ENLQALFVAL
710 720 730 740 750
NDQVFEIREL AICTVGRLSS MNPAFVMPFL RKMLIQILTE LEHSGIGRIK
760 770 780 790 800
EQSARMLGHL VSNAPRLIRP YMEPILKALI LKLKDPDPDP NPGVINNVLA
810 820 830 840 850
TIGELAQVSG LEMRKWVDEL FIIIMDMLQD SSLLAKRQVA LWTLGQLVAS
860 870 880 890 900
TGYVVEPYRK YPTLLEVLLN FLKTEQNQGT RREAIRVLGL LGALDPYKHK
910 920 930 940 950
VNIGMIDQSR DASAVSLSES KSSQDSSDYS TSEMLVNMGN LPLDEFYPAV
960 970 980 990 1000
SMVALMRIFR DQSLSHHHTM VVQAITFIFK SLGLKCVQFL PQVMPTFLNV
1010 1020 1030 1040 1050
IRVCDGAIRE FLFQQLGMLV SFVKSHIRPY MDEIVTLMRE FWVMNTSIQS
1060 1070 1080 1090 1100
TIILLIEQIV VALGGEFKLY LPQLIPHMLR VFMHDNSQGR IVSIKLLAAI
1110 1120 1130 1140 1150
QLFGANLDDY LHLLLPPIVK LFDAPEVPLP SRKAALETVD RLTESLDFTD
1160 1170 1180 1190 1200
YASRIIHPIV RTLDQSPELR STAMDTLSSL VFQLGKKYQI FIPMVNKVLV
1210 1220 1230 1240 1250
RHRINHQRYD VLICRIVKGY TLADEEEDPL IYQHRMLRSS QGDALASGPV
1260 1270 1280 1290 1300
ETGPMKKLHV STINLQKAWG AARRVSKDDW LEWLRRLSLE LLKDSSSPSL
1310 1320 1330 1340 1350
RSCWALAQAY NPMARDLFNA AFVSCWSELN EDQQDELIRS IELALTSQDI
1360 1370 1380 1390 1400
AEVTQTLLNL AEFMEHSDKG PLPLRDDNGI VLLGERAAKC RAYAKALHYK
1410 1420 1430 1440 1450
ELEFQKGPTP AILESLISIN NKLQQPEAAS GVLEYAMKHF GELEIQATWY
1460 1470 1480 1490 1500
EKLHEWEDAL VAYDKKMDTN KEDPELMLGR MRCLEALGEW GQLHQQCCEK
1510 1520 1530 1540 1550
WTLVNDETQA KMARMAAAAA WGLGQWDSME EYTCMIPRDT HDGAFYRAVL
1560 1570 1580 1590 1600
ALHQDLFSLA QQCIDKARDL LDAELTAMAG ESYSRAYGAM VSCHMLSELE
1610 1620 1630 1640 1650
EVIQYKLVPE RREIIRQIWW ERLQGCQRIV EDWQKILMVR SLVVSPHEDM
1660 1670 1680 1690 1700
RTWLKYASLC GKSGRLALAH KTLVLLLGVD PSRQLDHPLP TAHPQVTYAY
1710 1720 1730 1740 1750
MKNMWKSARK IDAFQHMQHF VQTMQQQAQH AIATEDQQHK QELHKLMARC
1760 1770 1780 1790 1800
FLKLGEWQLN LQGINESTIP KVLQYYSAAT EHDRSWYKAW HAWAVMNFEA
1810 1820 1830 1840 1850
VLHYKHQNQA RDEKKKLRHA SGANITNATT AATTAASAAA ATSTEGSNSE
1860 1870 1880 1890 1900
SEAESNENSP TPSPLQKKVT EDLSKTLLLY TVPAVQGFFR SISLSRGNNL
1910 1920 1930 1940 1950
QDTLRVLTLW FDYGHWPDVN EALVEGVKAI QIDTWLQVIP QLIARIDTPR
1960 1970 1980 1990 2000
PLVGRLIHQL LTDIGRYHPQ ALIYPLTVAS KSTTTARHNA ANKILKNMCE
2010 2020 2030 2040 2050
HSNTLVQQAM MVSEELIRVA ILWHEMWHEG LEEASRLYFG ERNVKGMFEV
2060 2070 2080 2090 2100
LEPLHAMMER GPQTLKETSF NQAYGRDLME AQEWCRKYMK SGNVKDLTQA
2110 2120 2130 2140 2150
WDLYYHVFRR ISKQLPQLTS LELQYVSPKL LMCRDLELAV PGTYDPNQPI
2160 2170 2180 2190 2200
IRIQSIAPSL QVITSKQRPR KLTLMGSNGH EFVFLLKGHE DLRQDERVMQ
2210 2220 2230 2240 2250
LFGLVNTLLA NDPTSLRKNL SIQRYAVIPL STNSGLIGWV PHCDTLHALI
2260 2270 2280 2290 2300
RDYREKKKIL LNIEHRIMLR MAPDYDHLTL MQKVEVFEHA VNNTAGDDLA
2310 2320 2330 2340 2350
KLLWLKSPSS EVWFDRRTNY TRSLAVMSMV GYILGLGDRH PSNLMLDRLS
2360 2370 2380 2390 2400
GKILHIDFGD CFEVAMTREK FPEKIPFRLT RMLTNAMEVT GLDGNYRTTC
2410 2420 2430 2440 2450
HTVMEVLREH KDSVMAVLEA FVYDPLLNWR LMDTNTKGNK RSRTRTDSYS
2460 2470 2480 2490 2500
AGQSVEILDG VELGEPAHKK AGTTVPESIH SFIGDGLVKP EALNKKAIQI
2510 2520 2530 2540
INRVRDKLTG RDFSHDDTLD VPTQVELLIK QATSHENLCQ CYIGWCPFW
Length:2,549
Mass (Da):288,789
Last modified:June 15, 2010 - v2
Checksum:i56302E5171FB6DBD
GO
Isoform 2 (identifier: Q9JLN9-2) [UniParc]FASTAAdd to Basket

The sequence of this isoform differs from the canonical sequence as follows:
     236-256: HTFEEAEKGFDETLAKEKGMN → VRDGSTQPLAKHFGLESCSWP
     257-2549: Missing.

Note: No experimental confirmation available.

Show »
Length:256
Mass (Da):28,467
Checksum:iF58320768DC9E928
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti33 – 331N → K in AAH43920. (PubMed:15489334)Curated
Sequence conflicti628 – 6281R → C in AAF73196. 1 PublicationCurated

Alternative sequence

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Alternative sequencei236 – 25621HTFEE…EKGMN → VRDGSTQPLAKHFGLESCSW P in isoform 2. 1 PublicationVSP_011909Add
BLAST
Alternative sequencei257 – 25492293Missing in isoform 2. 1 PublicationVSP_011910Add
BLAST

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
AF152838 mRNA. Translation: AAF73196.1.
AL731654, AL713995 Genomic DNA. Translation: CAM22525.1.
AL713995, AL731654 Genomic DNA. Translation: CAM23943.1.
CU210865 Genomic DNA. Translation: CAQ51622.1.
BC043920 mRNA. Translation: AAH43920.1.
BC112904 mRNA. Translation: AAI12905.1.
AK012031 mRNA. Translation: BAB27985.2.
CCDSiCCDS18937.1. [Q9JLN9-1]
RefSeqiNP_064393.2. NM_020009.2. [Q9JLN9-1]
UniGeneiMm.21158.

Genome annotation databases

EnsembliENSMUST00000057580; ENSMUSP00000054164; ENSMUSG00000028991. [Q9JLN9-2]
ENSMUST00000103221; ENSMUSP00000099510; ENSMUSG00000028991. [Q9JLN9-1]
GeneIDi56717.
KEGGimmu:56717.
UCSCiuc008vur.2. mouse. [Q9JLN9-1]

Keywords - Coding sequence diversityi

Alternative splicing

Cross-referencesi

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
AF152838 mRNA. Translation: AAF73196.1 .
AL731654 , AL713995 Genomic DNA. Translation: CAM22525.1 .
AL713995 , AL731654 Genomic DNA. Translation: CAM23943.1 .
CU210865 Genomic DNA. Translation: CAQ51622.1 .
BC043920 mRNA. Translation: AAH43920.1 .
BC112904 mRNA. Translation: AAI12905.1 .
AK012031 mRNA. Translation: BAB27985.2 .
CCDSi CCDS18937.1. [Q9JLN9-1 ]
RefSeqi NP_064393.2. NM_020009.2. [Q9JLN9-1 ]
UniGenei Mm.21158.

3D structure databases

ProteinModelPortali Q9JLN9.
SMRi Q9JLN9. Positions 2025-2422, 2517-2549.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

BioGridi 208142. 13 interactions.
DIPi DIP-40570N.
IntActi Q9JLN9. 20 interactions.
MINTi MINT-1899010.
STRINGi 10090.ENSMUSP00000099510.

Chemistry

BindingDBi Q9JLN9.
ChEMBLi CHEMBL1255165.

PTM databases

PhosphoSitei Q9JLN9.

Proteomic databases

MaxQBi Q9JLN9.
PaxDbi Q9JLN9.
PRIDEi Q9JLN9.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Genome annotation databases

Ensembli ENSMUST00000057580 ; ENSMUSP00000054164 ; ENSMUSG00000028991 . [Q9JLN9-2 ]
ENSMUST00000103221 ; ENSMUSP00000099510 ; ENSMUSG00000028991 . [Q9JLN9-1 ]
GeneIDi 56717.
KEGGi mmu:56717.
UCSCi uc008vur.2. mouse. [Q9JLN9-1 ]

Organism-specific databases

CTDi 2475.
MGIi MGI:1928394. Mtor.

Phylogenomic databases

eggNOGi COG5032.
GeneTreei ENSGT00760000119382.
HOGENOMi HOG000163215.
HOVERGENi HBG005744.
InParanoidi Q9JLN9.
KOi K07203.
OMAi TYKQNIG.
OrthoDBi EOG7CCBQ4.
PhylomeDBi Q9JLN9.
TreeFami TF105134.

Enzyme and pathway databases

Reactomei REACT_196588. Constitutive PI3K/AKT Signaling in Cancer.
REACT_213550. HSF1-dependent transactivation.
REACT_226151. CD28 dependent PI3K/Akt signaling.
REACT_226341. PIP3 activates AKT signaling.

Miscellaneous databases

ChiTaRSi MTOR. mouse.
NextBioi 313190.
PROi Q9JLN9.
SOURCEi Search...

Gene expression databases

Bgeei Q9JLN9.
Genevestigatori Q9JLN9.

Family and domain databases

Gene3Di 1.10.1070.11. 3 hits.
1.20.120.150. 1 hit.
1.25.10.10. 4 hits.
1.25.40.10. 2 hits.
InterProi IPR011989. ARM-like.
IPR016024. ARM-type_fold.
IPR024585. DUF3385_TOR.
IPR003152. FATC.
IPR011009. Kinase-like_dom.
IPR000403. PI3/4_kinase_cat_dom.
IPR018936. PI3/4_kinase_CS.
IPR003151. PIK-rel_kinase_FAT.
IPR014009. PIK_FAT.
IPR009076. Rapamycin-bd_dom.
IPR011990. TPR-like_helical_dom.
[Graphical view ]
Pfami PF11865. DUF3385. 1 hit.
PF02259. FAT. 1 hit.
PF02260. FATC. 1 hit.
PF00454. PI3_PI4_kinase. 1 hit.
PF08771. Rapamycin_bind. 1 hit.
[Graphical view ]
SMARTi SM00146. PI3Kc. 1 hit.
[Graphical view ]
SUPFAMi SSF47212. SSF47212. 1 hit.
SSF48371. SSF48371. 5 hits.
SSF56112. SSF56112. 2 hits.
PROSITEi PS51189. FAT. 1 hit.
PS51190. FATC. 1 hit.
PS00915. PI3_4_KINASE_1. 1 hit.
PS00916. PI3_4_KINASE_2. 1 hit.
PS50290. PI3_4_KINASE_3. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

« Hide 'large scale' publications
  1. "Positional cloning of mouse plasmacytoma susceptibility gene."
    Bliskovsky V., Mock B.
    Submitted (MAY-1999) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1).
    Strain: BALB/c.
  2. Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: C57BL/6J.
  3. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
    Strain: C57BL/6 and FVB/N.
    Tissue: Kidney and Retina.
  4. "The transcriptional landscape of the mammalian genome."
    Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J.
    , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
    Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 1155-1334.
    Strain: C57BL/6J.
    Tissue: Embryo.
  5. Lubec G., Kang S.U.
    Submitted (APR-2007) to UniProtKB
    Cited for: PROTEIN SEQUENCE OF 1287-1293, IDENTIFICATION BY MASS SPECTROMETRY.
    Strain: C57BL/6.
    Tissue: Brain.
  6. "RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex."
    Chiu M.I., Katz H., Berlin V.
    Proc. Natl. Acad. Sci. U.S.A. 91:12574-12578(1994) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 1987-2146, INTERACTION WITH THE FKBP1A-RAPAMYCIN COMPLEX, MUTAGENESIS OF SER-2035, TISSUE SPECIFICITY.
    Tissue: Embryo.
  7. "Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin."
    Huffman T.A., Mothe-Satney I., Lawrence J.C. Jr.
    Proc. Natl. Acad. Sci. U.S.A. 99:1047-1052(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN PHOSPHORYLATION OF LPIN1.
  8. "FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction."
    Desai B.N., Myers B.R., Schreiber S.L.
    Proc. Natl. Acad. Sci. U.S.A. 99:4319-4324(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
  9. "Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex."
    Brugarolas J., Lei K., Hurley R.L., Manning B.D., Reiling J.H., Hafen E., Witters L.A., Ellisen L.W., Kaelin W.G. Jr.
    Genes Dev. 18:2893-2904(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: ENZYME REGULATION, FUNCTION IN RESPONSE TO HYPOXIA.
  10. "Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive."
    Jacinto E., Loewith R., Schmidt A., Lin S., Ruegg M.A., Hall A., Hall M.N.
    Nat. Cell Biol. 6:1122-1128(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, IDENTIFICATION IN MTORC2 COMPLEX.
  11. "mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes."
    Hresko R.C., Mueckler M.
    J. Biol. Chem. 280:40406-40416(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  12. "SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity."
    Jacinto E., Facchinetti V., Liu D., Soto N., Wei S., Jung S.Y., Huang Q., Qin J., Su B.
    Cell 127:125-137(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, IDENTIFICATION IN MTORC2 COMPLEX.
  13. "PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR."
    Bernardi R., Guernah I., Jin D., Grisendi S., Alimonti A., Teruya-Feldstein J., Cordon-Cardo C., Simon M.C., Rafii S., Pandolfi P.P.
    Nature 442:779-785(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, SUBCELLULAR LOCATION, INTERACTION WITH PML.
  14. "mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex."
    Cunningham J.T., Rodgers J.T., Arlow D.H., Vazquez F., Mootha V.K., Puigserver P.
    Nature 450:736-740(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN MITOCHONDRIAL BIOGENESIS.
  15. Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-2478 AND SER-2481, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Liver.
  16. "Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptor by mTOR."
    Wang L., Lawrence J.C. Jr., Sturgill T.W., Harris T.E.
    J. Biol. Chem. 284:14693-14697(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION OF RPTOR.
  17. "Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth."
    Acosta-Jaquez H.A., Keller J.A., Foster K.G., Ekim B., Soliman G.A., Feener E.P., Ballif B.A., Fingar D.C.
    Mol. Cell. Biol. 29:4308-4324(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-1261, ENZYME REGULATION.
  18. "Regulation of myoblast differentiation by the nuclear envelope protein NET39."
    Liu G.H., Guan T., Datta K., Coppinger J., Yates J. III, Gerace L.
    Mol. Cell. Biol. 29:5800-5812(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PPAPDC3.
  19. "Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes."
    Takai H., Xie Y., de Lange T., Pavletich N.P.
    Genes Dev. 24:2019-2030(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH MLST8; PRR5 AND RPTOR.
  20. "AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1."
    Kim J., Kundu M., Viollet B., Guan K.L.
    Nat. Cell Biol. 13:132-141(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN AUTOPHAGY, FUNCTION IN PHOSPHORYLATION OF ULK1.
  21. "The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling."
    Hsu P.P., Kang S.A., Rameseder J., Zhang Y., Ottina K.A., Lim D., Peterson T.R., Choi Y., Gray N.S., Yaffe M.B., Marto J.A., Sabatini D.M.
    Science 332:1317-1322(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN PHOSPHORYLATION OF GRB10.

Entry informationi

Entry nameiMTOR_MOUSE
AccessioniPrimary (citable) accession number: Q9JLN9
Secondary accession number(s): Q2KHT0, Q811J5, Q9CST1
Entry historyi
Integrated into UniProtKB/Swiss-Prot: April 27, 2001
Last sequence update: June 15, 2010
Last modified: October 29, 2014
This is version 128 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

Complete proteome, Direct protein sequencing, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. Human and mouse protein kinases
    Human and mouse protein kinases: classification and index
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3