Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q9H2K2 (TNKS2_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 134. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (4) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Tankyrase-2

Short name=TANK2
EC=2.4.2.30
Alternative name(s):
ADP-ribosyltransferase diphtheria toxin-like 6
Short name=ARTD6
Poly [ADP-ribose] polymerase 5B
TNKS-2
TRF1-interacting ankyrin-related ADP-ribose polymerase 2
Tankyrase II
Tankyrase-like protein
Tankyrase-related protein
Gene names
Name:TNKS2
Synonyms:PARP5B, TANK2, TNKL
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length1166 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Poly-ADP-ribosyltransferase involved in various processes such as Wnt signaling pathway, telomere length and vesicle trafficking. Acts as an activator of the Wnt signaling pathway by mediating poly-ADP-ribosylation of AXIN1 and AXIN2, 2 key components of the beta-catenin destruction complex: poly-ADP-ribosylated target proteins are recognized by RNF146, which mediates their ubiquitination and subsequent degradation. Also mediates poly-ADP-ribosylation of BLZF1 and CASC3, followed by recruitment of RNF146 and subsequent ubiquitination. Mediates poly-ADP-ribosylation of TERF1, thereby contributing to the regulation of telomere length. May also regulate vesicle trafficking and modulate the subcellular distribution of SLC2A4/GLUT4-vesicles. Stimulates 26S proteasome activity. Ref.5 Ref.9 Ref.11 Ref.13 Ref.15

Catalytic activity

NAD+ + (ADP-D-ribosyl)(n)-acceptor = nicotinamide + (ADP-D-ribosyl)(n+1)-acceptor. Ref.11 Ref.13

Enzyme regulation

Specifically inhibited by XAV939, a small molecule, leading to inhibit the Wnt signaling pathway by stabilizing AXIN1 and AXIN2. Ref.11

Subunit structure

Oligomerizes and associates with TNKS. Interacts with the cytoplasmic domain of LNPEP/Otase in SLC2A4/GLUT4-vesicles. Binds to the N-terminus of Grb14 and TRF1 with its ankyrin repeat region. Interacts with HIF1AN. Interacts with RNF146; this interaction leads to ubiquitination and proteasomal degradation. Ref.5 Ref.10 Ref.11 Ref.13 Ref.14

Subcellular location

Cytoplasm. Golgi apparatus membrane; Peripheral membrane protein. Nucleus. Chromosometelomere Potential. Note: Associated with the Golgi and with juxtanuclear SLC2A4/GLUT4-vesicles. Also found around the pericentriolar matrix of mitotic centromeres. During interphase, a small fraction of TNKS2 is found in the nucleus, associated with TRF1. Ref.3 Ref.4 Ref.14

Tissue specificity

Highly expressed in placenta, skeletal muscle, liver, brain, kidney, heart, thymus, spinal cord, lung, peripheral blood leukocytes, pancreas, lymph nodes, spleen, prostate, testis, ovary, small intestine, colon, mammary gland, breast and breast carcinoma, and in common-type meningioma. Highly expressed in fetal liver, heart and brain.

Post-translational modification

Ubiquitinated at 'Lys-48' and 'Lys-63' by RNF146 when auto-poly-ADP-ribosylated; this leads to degradation. Ref.13 Ref.14

ADP-ribosylated (-auto). Poly-ADP-ribosylated protein is recognized by RNF146, followed by ubiquitination.

The crystallographic evidence suggests that the 3-hydroxyhistidine may be the (3S) stereoisomer.

Sequence similarities

Contains 15 ANK repeats.

Contains 1 PARP catalytic domain.

Contains 1 SAM (sterile alpha motif) domain.

Sequence caution

The sequence AAG25674.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally shortened.

The sequence BAB14665.1 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

Ontologies

Keywords
   Biological processWnt signaling pathway
   Cellular componentChromosome
Cytoplasm
Golgi apparatus
Membrane
Nucleus
Telomere
   DomainANK repeat
Repeat
   LigandMetal-binding
NAD
Zinc
   Molecular functionGlycosyltransferase
Transferase
   PTMADP-ribosylation
Hydroxylation
Ubl conjugation
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processWnt signaling pathway

Inferred from electronic annotation. Source: UniProtKB-KW

multicellular organism growth

Inferred from electronic annotation. Source: Ensembl

positive regulation of canonical Wnt signaling pathway

Inferred from mutant phenotype Ref.11. Source: UniProtKB

positive regulation of telomere maintenance via telomerase

Inferred by curator Ref.9. Source: BHF-UCL

protein ADP-ribosylation

Inferred from direct assay Ref.9. Source: BHF-UCL

protein auto-ADP-ribosylation

Inferred from direct assay Ref.11Ref.13. Source: UniProtKB

protein localization to chromosome, telomeric region

Inferred from mutant phenotype Ref.9. Source: BHF-UCL

protein polyubiquitination

Inferred from direct assay Ref.11Ref.13. Source: UniProtKB

regulation of multicellular organism growth

Inferred from electronic annotation. Source: Ensembl

   Cellular_componentGolgi membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

cytoplasm

Inferred from direct assay Ref.3. Source: BHF-UCL

nuclear chromosome, telomeric region

Inferred by curator Ref.9. Source: BHF-UCL

nuclear envelope

Inferred from direct assay Ref.4. Source: BHF-UCL

nucleus

Inferred from direct assay Ref.9. Source: BHF-UCL

pericentriolar material

Inferred from direct assay Ref.4. Source: BHF-UCL

perinuclear region of cytoplasm

Inferred from direct assay Ref.4. Source: BHF-UCL

   Molecular_functionNAD+ ADP-ribosyltransferase activity

Inferred from direct assay Ref.11Ref.13. Source: UniProtKB

enzyme binding

Inferred from physical interaction Ref.16. Source: UniProtKB

metal ion binding

Inferred from electronic annotation. Source: UniProtKB-KW

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 11661166Tankyrase-2
PRO_0000211334

Regions

Repeat57 – 8933ANK 1
Repeat90 – 12233ANK 2
Repeat123 – 15533ANK 3
Repeat210 – 24233ANK 4
Repeat243 – 27533ANK 5
Repeat276 – 30833ANK 6
Repeat363 – 39836ANK 7
Repeat399 – 43133ANK 8
Repeat432 – 46433ANK 9
Repeat525 – 55733ANK 10
Repeat558 – 59033ANK 11
Repeat591 – 62333ANK 12
Repeat678 – 71033ANK 13
Repeat711 – 74333ANK 14
Repeat744 – 77633ANK 15
Domain873 – 93664SAM
Domain959 – 1164206PARP catalytic
Region545 – 5539HIF1AN-binding

Sites

Metal binding10811Zinc By similarity
Metal binding10841Zinc By similarity
Metal binding10891Zinc By similarity
Metal binding10921Zinc By similarity

Amino acid modifications

Modified residue2031(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue2381(3S)-3-hydroxyhistidine; by HIF1AN; partial
Modified residue2711(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue4271(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue5181(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue5531(3S)-3-hydroxyhistidine; by HIF1AN; partial
Modified residue5861(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue6711(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue7061(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10
Modified residue7391(3S)-3-hydroxyasparagine; by HIF1AN; partial Ref.10

Experimental info

Mutagenesis5531H → D: Enhanced hydroxylation by HIF1AN. Ref.16
Mutagenesis5531H → N: Enhanced hydroxylation by HIF1AN. Ref.16
Mutagenesis10541M → V: Loss of activity. Ref.11
Sequence conflict1151A → T in BAG37180. Ref.7
Sequence conflict331 – 3377KGHSLLQ → QRPLVAA in AAG25674. Ref.1
Sequence conflict357 – 3615NFKHP → IQAS in AAG25674. Ref.1
Sequence conflict9661Q → P in BAB14665. Ref.7

Secondary structure

................................................................. 1166
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Q9H2K2 [UniParc].

Last modified March 1, 2001. Version 1.
Checksum: 4C8B3B8D97CEF704

FASTA1,166126,918
        10         20         30         40         50         60 
MSGRRCAGGG AACASAAAEA VEPAARELFE ACRNGDVERV KRLVTPEKVN SRDTAGRKST 

        70         80         90        100        110        120 
PLHFAAGFGR KDVVEYLLQN GANVQARDDG GLIPLHNACS FGHAEVVNLL LRHGADPNAR 

       130        140        150        160        170        180 
DNWNYTPLHE AAIKGKIDVC IVLLQHGAEP TIRNTDGRTA LDLADPSAKA VLTGEYKKDE 

       190        200        210        220        230        240 
LLESARSGNE EKMMALLTPL NVNCHASDGR KSTPLHLAAG YNRVKIVQLL LQHGADVHAK 

       250        260        270        280        290        300 
DKGDLVPLHN ACSYGHYEVT ELLVKHGACV NAMDLWQFTP LHEAASKNRV EVCSLLLSYG 

       310        320        330        340        350        360 
ADPTLLNCHN KSAIDLAPTP QLKERLAYEF KGHSLLQAAR EADVTRIKKH LSLEMVNFKH 

       370        380        390        400        410        420 
PQTHETALHC AAASPYPKRK QICELLLRKG ANINEKTKEF LTPLHVASEK AHNDVVEVVV 

       430        440        450        460        470        480 
KHEAKVNALD NLGQTSLHRA AYCGHLQTCR LLLSYGCDPN IISLQGFTAL QMGNENVQQL 

       490        500        510        520        530        540 
LQEGISLGNS EADRQLLEAA KAGDVETVKK LCTVQSVNCR DIEGRQSTPL HFAAGYNRVS 

       550        560        570        580        590        600 
VVEYLLQHGA DVHAKDKGGL VPLHNACSYG HYEVAELLVK HGAVVNVADL WKFTPLHEAA 

       610        620        630        640        650        660 
AKGKYEICKL LLQHGADPTK KNRDGNTPLD LVKDGDTDIQ DLLRGDAALL DAAKKGCLAR 

       670        680        690        700        710        720 
VKKLSSPDNV NCRDTQGRHS TPLHLAAGYN NLEVAEYLLQ HGADVNAQDK GGLIPLHNAA 

       730        740        750        760        770        780 
SYGHVDVAAL LIKYNACVNA TDKWAFTPLH EAAQKGRTQL CALLLAHGAD PTLKNQEGQT 

       790        800        810        820        830        840 
PLDLVSADDV SALLTAAMPP SALPSCYKPQ VLNGVRSPGA TADALSSGPS SPSSLSAASS 

       850        860        870        880        890        900 
LDNLSGSFSE LSSVVSSSGT EGASSLEKKE VPGVDFSITQ FVRNLGLEHL MDIFEREQIT 

       910        920        930        940        950        960 
LDVLVEMGHK ELKEIGINAY GHRHKLIKGV ERLISGQQGL NPYLTLNTSG SGTILIDLSP 

       970        980        990       1000       1010       1020 
DDKEFQSVEE EMQSTVREHR DGGHAGGIFN RYNILKIQKV CNKKLWERYT HRRKEVSEEN 

      1030       1040       1050       1060       1070       1080 
HNHANERMLF HGSPFVNAII HKGFDERHAY IGGMFGAGIY FAENSSKSNQ YVYGIGGGTG 

      1090       1100       1110       1120       1130       1140 
CPVHKDRSCY ICHRQLLFCR VTLGKSFLQF SAMKMAHSPP GHHSVTGRPS VNGLALAEYV 

      1150       1160 
IYRGEQAYPE YLITYQIMRP EGMVDG 

« Hide

References

« Hide 'large scale' references
[1]"Novel tankyrase-related gene detected with meningioma-specific sera."
Monz D., Munnia A., Comtesse N., Fischer U., Steudel W.-I., Feiden W., Glass B., Meese E.U.
Clin. Cancer Res. 7:113-119(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
Tissue: Fetal brain.
[2]"Cloning and characterization of TNKL, a member of tankyrase gene family."
Kuimov A.N., Kuprash D.V., Petrov V.N., Vdovichenko K.K., Scanlan M.J., Jongeneel C.V., Lagarkova M.A., Nedospasov S.A.
Genes Immun. 2:52-55(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
Tissue: Mammary carcinoma.
[3]"Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14."
Lyons R.J., Deane R., Lynch D.K., Ye Z.-S.J., Sanderson G.M., Eyre H.J., Sutherland G.R., Daly R.J.
J. Biol. Chem. 276:17172-17180(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], SUBCELLULAR LOCATION.
Tissue: Liver.
[4]"TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression."
Kaminker P.G., Kim S.-H., Taylor R.D., Zebarjadian Y., Funk W.D., Morin G.B., Yaswen P., Campisi J.
J. Biol. Chem. 276:35891-35899(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], SUBCELLULAR LOCATION.
Tissue: Placenta.
[5]"Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase)."
Sbodio J.I., Lodish H.F., Chi N.-W.
Biochem. J. 361:451-459(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, INTERACTION WITH TRF1 AND LNPEP/OTASE.
Tissue: Skeletal muscle.
[6]Yin Y., Gelmann E.P.
Submitted (OCT-2001) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
[7]"Complete sequencing and characterization of 21,243 full-length human cDNAs."
Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R., Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H., Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S. expand/collapse author list , Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K., Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H., Tanase T.-O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S., Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O., Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H., Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B., Yamazaki M., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H., Watanabe M., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R., Nakai K., Yada T., Nakamura Y., Ohara O., Isogai T., Sugano S.
Nat. Genet. 36:40-45(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Tissue: Placenta and Testis.
[8]"The DNA sequence and comparative analysis of human chromosome 10."
Deloukas P., Earthrowl M.E., Grafham D.V., Rubenfield M., French L., Steward C.A., Sims S.K., Jones M.C., Searle S., Scott C., Howe K., Hunt S.E., Andrews T.D., Gilbert J.G.R., Swarbreck D., Ashurst J.L., Taylor A., Battles J. expand/collapse author list , Bird C.P., Ainscough R., Almeida J.P., Ashwell R.I.S., Ambrose K.D., Babbage A.K., Bagguley C.L., Bailey J., Banerjee R., Bates K., Beasley H., Bray-Allen S., Brown A.J., Brown J.Y., Burford D.C., Burrill W., Burton J., Cahill P., Camire D., Carter N.P., Chapman J.C., Clark S.Y., Clarke G., Clee C.M., Clegg S., Corby N., Coulson A., Dhami P., Dutta I., Dunn M., Faulkner L., Frankish A., Frankland J.A., Garner P., Garnett J., Gribble S., Griffiths C., Grocock R., Gustafson E., Hammond S., Harley J.L., Hart E., Heath P.D., Ho T.P., Hopkins B., Horne J., Howden P.J., Huckle E., Hynds C., Johnson C., Johnson D., Kana A., Kay M., Kimberley A.M., Kershaw J.K., Kokkinaki M., Laird G.K., Lawlor S., Lee H.M., Leongamornlert D.A., Laird G., Lloyd C., Lloyd D.M., Loveland J., Lovell J., McLaren S., McLay K.E., McMurray A., Mashreghi-Mohammadi M., Matthews L., Milne S., Nickerson T., Nguyen M., Overton-Larty E., Palmer S.A., Pearce A.V., Peck A.I., Pelan S., Phillimore B., Porter K., Rice C.M., Rogosin A., Ross M.T., Sarafidou T., Sehra H.K., Shownkeen R., Skuce C.D., Smith M., Standring L., Sycamore N., Tester J., Thorpe A., Torcasso W., Tracey A., Tromans A., Tsolas J., Wall M., Walsh J., Wang H., Weinstock K., West A.P., Willey D.L., Whitehead S.L., Wilming L., Wray P.W., Young L., Chen Y., Lovering R.C., Moschonas N.K., Siebert R., Fechtel K., Bentley D., Durbin R.M., Hubbard T., Doucette-Stamm L., Beck S., Smith D.R., Rogers J.
Nature 429:375-381(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[9]"Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres."
Cook B.D., Dynek J.N., Chang W., Shostak G., Smith S.
Mol. Cell. Biol. 22:332-342(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, ADP-RIBOSYLATION.
[10]"Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins."
Cockman M.E., Webb J.D., Kramer H.B., Kessler B.M., Ratcliffe P.J.
Mol. Cell. Proteomics 8:535-546(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH HIF1AN, HYDROXYLATION AT ASN-203; ASN-271; ASN-427; ASN-518; ASN-586; ASN-671; ASN-706 AND ASN-739.
[11]"Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling."
Huang S.M., Mishina Y.M., Liu S., Cheung A., Stegmeier F., Michaud G.A., Charlat O., Wiellette E., Zhang Y., Wiessner S., Hild M., Shi X., Wilson C.J., Mickanin C., Myer V., Fazal A., Tomlinson R., Serluca F. expand/collapse author list , Shao W., Cheng H., Shultz M., Rau C., Schirle M., Schlegl J., Ghidelli S., Fawell S., Lu C., Curtis D., Kirschner M.W., Lengauer C., Finan P.M., Tallarico J.A., Bouwmeester T., Porter J.A., Bauer A., Cong F.
Nature 461:614-620(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, CATALYTIC ACTIVITY, ENZYME REGULATION, INTERACTION WITH AXIN1 AND AXIN2, MUTAGENESIS OF MET-1054.
[12]"Toward a unified nomenclature for mammalian ADP-ribosyltransferases."
Hottiger M.O., Hassa P.O., Luscher B., Schuler H., Koch-Nolte F.
Trends Biochem. Sci. 35:208-219(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: NOMENCLATURE.
[13]"RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling."
Zhang Y., Liu S., Mickanin C., Feng Y., Charlat O., Michaud G.A., Schirle M., Shi X., Hild M., Bauer A., Myer V.E., Finan P.M., Porter J.A., Huang S.M., Cong F.
Nat. Cell Biol. 13:623-629(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, CATALYTIC ACTIVITY, INTERACTION WITH AXIN1; AXIN2; BLZF1 AND CASC3, UBIQUITINATION.
[14]"Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling."
Callow M.G., Tran H., Phu L., Lau T., Lee J., Sandoval W.N., Liu P.S., Bheddah S., Tao J., Lill J.R., Hongo J.A., Davis D., Kirkpatrick D.S., Polakis P., Costa M.
PLoS ONE 6:E22595-E22595(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RNF146, UBIQUITINATION, SUBCELLULAR LOCATION.
[15]"Proteasome regulation by ADP-ribosylation."
Cho-Park P.F., Steller H.
Cell 153:614-627(2013) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[16]"Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains."
Yang M., Chowdhury R., Ge W., Hamed R.B., McDonough M.A., Claridge T.D., Kessler B.M., Cockman M.E., Ratcliffe P.J., Schofield C.J.
FEBS J. 278:1086-1097(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: X-RAY CRYSTALLOGRAPHY (2.28 ANGSTROMS) OF 538-558 IN COMPLEX WITH HIF1AN; IRON AND 2-OXOGLUTARATE, HYDROXYLATION AT HIS-238 AND HIS-553, MUTAGENESIS OF HIS-553.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF305081 mRNA. Translation: AAG25674.1. Different initiation.
AF264912 mRNA. Translation: AAG44694.1.
AF329696 mRNA. Translation: AAK13463.1.
AF342982 mRNA. Translation: AAK25811.1.
AF309033 mRNA. Translation: AAK82330.1.
AF438201 mRNA. Translation: AAL40795.1.
AK023746 mRNA. Translation: BAB14665.1. Different initiation.
AK314612 mRNA. Translation: BAG37180.1.
AL359707 Genomic DNA. Translation: CAC78760.1.
RefSeqNP_079511.1. NM_025235.3.
UniGeneHs.329327.

3D structure databases

PDBe
RCSB PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
2Y0IX-ray2.28S538-558[»]
3KR7X-ray1.95A946-1162[»]
3KR8X-ray2.10A/C946-1162[»]
3MHJX-ray1.80A/B946-1162[»]
3MHKX-ray2.30A952-1166[»]
3P0NX-ray1.90A/C946-1162[»]
3P0PX-ray2.49A/C946-1162[»]
3P0QX-ray1.90A/C946-1162[»]
3TWQX-ray2.15A/B484-655[»]
3TWRX-ray1.55A/B/C/D488-649[»]
3TWSX-ray1.70A/B/C/D488-649[»]
3TWTX-ray1.85A/B/C/D488-649[»]
3TWUX-ray1.80A488-649[»]
3TWVX-ray2.30A/B/C/D488-649[»]
3TWWX-ray2.00A/B488-649[»]
3TWXX-ray1.80A/B488-649[»]
3U9HX-ray1.75A/B946-1162[»]
3U9YX-ray2.30A946-1162[»]
3UA9X-ray2.15A/B946-1162[»]
3W51X-ray2.00A/B952-1161[»]
4AVUX-ray2.40A/B946-1162[»]
4AVWX-ray2.15A/B946-1162[»]
4BFPX-ray2.40A/B946-1162[»]
4BJ9X-ray2.05A/B946-1162[»]
4BJBX-ray2.30A946-1162[»]
4BJCX-ray2.20A946-1162[»]
4BS4X-ray1.89A/B946-1162[»]
4BU3X-ray2.15A/B946-1162[»]
4BU5X-ray1.80A/B946-1162[»]
4BU6X-ray1.80A/B946-1162[»]
4BU7X-ray2.05A/C946-1162[»]
4BU8X-ray1.85A/C946-1162[»]
4BU9X-ray1.65A/B946-1162[»]
4BUAX-ray1.85A/C946-1162[»]
4BUDX-ray2.50A/C946-1162[»]
4BUEX-ray1.60A/B946-1162[»]
4BUFX-ray2.50A/B946-1162[»]
4BUIX-ray1.95A/C946-1162[»]
4BUSX-ray1.90A/B946-1162[»]
4BUTX-ray1.90A/B946-1162[»]
4BUUX-ray1.60A/B946-1162[»]
4BUVX-ray1.80A/C946-1162[»]
4BUWX-ray1.85A/B946-1162[»]
4BUXX-ray1.95A/C946-1162[»]
4BUYX-ray1.90A/B946-1162[»]
4HKIX-ray2.15A/H946-1113[»]
C/D1114-1162[»]
4HKKX-ray1.95A/C946-1113[»]
B/D1114-1162[»]
4HKNX-ray2.05A946-1113[»]
C1114-1162[»]
4HL5X-ray2.20A946-1113[»]
C1114-1162[»]
4HLFX-ray2.15A/B946-1113[»]
C/D1114-1162[»]
4HLGX-ray2.00A/B946-1113[»]
C/D1114-1162[»]
4HLHX-ray1.75A/B946-1113[»]
C/D1114-1162[»]
4HLKX-ray2.00A/B946-1113[»]
C/D1114-1162[»]
4HLMX-ray1.95A/B946-1113[»]
C/D1114-1162[»]
4HMHX-ray2.30A946-1113[»]
C1114-1162[»]
4HYFX-ray2.80A/B/C946-1162[»]
4IUEX-ray2.38A952-1161[»]
4J1ZX-ray2.00A/B952-1161[»]
4J21X-ray1.93A952-1161[»]
4J22X-ray2.12A/B952-1161[»]
4J3LX-ray2.09A952-1161[»]
4J3MX-ray1.90A/B952-1161[»]
4KZLX-ray2.00A/B946-1113[»]
C/D1114-1162[»]
4KZQX-ray2.25A/B946-1113[»]
C/D1114-1162[»]
4KZUX-ray2.10A/B946-1113[»]
C/D1114-1162[»]
4L09X-ray2.05A/B946-1113[»]
C/D1114-1162[»]
4L0BX-ray1.80A/B946-1113[»]
C/D1114-1162[»]
4L0IX-ray2.30A/B946-1113[»]
C/D1114-1162[»]
4L0SX-ray1.90A/B946-1113[»]
C/D1114-1162[»]
4L0TX-ray2.10A/B946-1113[»]
C/D1114-1162[»]
4L0VX-ray1.70A/B946-1113[»]
C/D1114-1162[»]
4L10X-ray1.70A/B946-1113[»]
C/D1114-1162[»]
4L2FX-ray2.05A/B946-1113[»]
C/D1114-1162[»]
4L2GX-ray2.05A/B946-1113[»]
C/D1114-1162[»]
4L2KX-ray2.10A/B946-1113[»]
C/D1114-1162[»]
4L31X-ray2.00A/B946-1113[»]
C/D1114-1162[»]
4L32X-ray1.85A/B946-1113[»]
C/D1114-1162[»]
4L33X-ray2.10A/B946-1113[»]
C/D1114-1162[»]
4L34X-ray1.80A/B946-1113[»]
C/D1114-1162[»]
ProteinModelPortalQ9H2K2.
SMRQ9H2K2. Positions 21-887, 952-1161.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid123257. 11 interactions.
DIPDIP-42098N.
IntActQ9H2K2. 32 interactions.
MINTMINT-1183420.
STRING9606.ENSP00000360689.

Chemistry

BindingDBQ9H2K2.
ChEMBLCHEMBL6154.

PTM databases

PhosphoSiteQ9H2K2.

Polymorphism databases

DMDM20140805.

Proteomic databases

PaxDbQ9H2K2.
PRIDEQ9H2K2.

Protocols and materials databases

DNASU80351.
StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000371627; ENSP00000360689; ENSG00000107854.
GeneID80351.
KEGGhsa:80351.
UCSCuc001khp.3. human.

Organism-specific databases

CTD80351.
GeneCardsGC10P093548.
HGNCHGNC:15677. TNKS2.
HPAHPA036606.
MIM607128. gene.
neXtProtNX_Q9H2K2.
PharmGKBPA38019.
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG0666.
HOGENOMHOG000246964.
HOVERGENHBG059472.
InParanoidQ9H2K2.
KOK10799.
OMAPYLTLNN.
OrthoDBEOG7N8ZTP.
PhylomeDBQ9H2K2.
TreeFamTF326036.

Gene expression databases

BgeeQ9H2K2.
CleanExHS_TNKS2.
GenevestigatorQ9H2K2.

Family and domain databases

Gene3D1.10.150.50. 1 hit.
1.25.40.20. 7 hits.
3.90.228.10. 1 hit.
InterProIPR002110. Ankyrin_rpt.
IPR020683. Ankyrin_rpt-contain_dom.
IPR012317. Poly(ADP-ribose)pol_cat_dom.
IPR001660. SAM.
IPR013761. SAM/pointed.
IPR011510. SAM_2.
[Graphical view]
PfamPF00023. Ank. 2 hits.
PF12796. Ank_2. 5 hits.
PF00644. PARP. 1 hit.
PF07647. SAM_2. 1 hit.
[Graphical view]
PRINTSPR01415. ANKYRIN.
SMARTSM00248. ANK. 15 hits.
SM00454. SAM. 1 hit.
[Graphical view]
SUPFAMSSF47769. SSF47769. 1 hit.
SSF48403. SSF48403. 4 hits.
PROSITEPS50297. ANK_REP_REGION. 1 hit.
PS50088. ANK_REPEAT. 15 hits.
PS51059. PARP_CATALYTIC. 1 hit.
PS50105. SAM_DOMAIN. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSTNKS2. human.
EvolutionaryTraceQ9H2K2.
GeneWikiTNKS2.
GenomeRNAi80351.
NextBio70966.
PROQ9H2K2.
SOURCESearch...

Entry information

Entry nameTNKS2_HUMAN
AccessionPrimary (citable) accession number: Q9H2K2
Secondary accession number(s): B2RBD3, Q9H8F2, Q9HAS4
Entry history
Integrated into UniProtKB/Swiss-Prot: March 27, 2002
Last sequence update: March 1, 2001
Last modified: April 16, 2014
This is version 134 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human chromosome 10

Human chromosome 10: entries, gene names and cross-references to MIM