Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q9CWF6 (BBS2_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 96. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (1) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Bardet-Biedl syndrome 2 protein homolog
Gene names
Name:Bbs2
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length721 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

The BBSome complex is thought to function as a coat complex required for sorting of specific membrane proteins to the primary cilia. The BBSome complex is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Firstly the BBSome associates with the ciliary membrane and binds to RAB3IP/Rabin8, the guanosyl exchange factor (GEF) for Rab8 and then the Rab8-GTP localizes to the cilium and promotes docking and fusion of carrier vesicles to the base of the ciliary membrane. The BBSome complex, together with the LTZL1, controls SMO ciliary trafficking and contributes to the sonic hedgehog (SHH) pathway regulation. Required for proper BBSome complex assembly and its ciliary localization By similarity.

Subunit structure

Part of BBSome complex, that contains BBS1, BBS2, BBS4, BBS5, BBS7, BBS8/TTC8, BBS9 and BBIP10. Interacts (via C-terminus) with BBS7. Interacts (via coiled coil domain) with MKKS. Interacts with CCDC28B. Ref.4

Subcellular location

Cell projectioncilium membrane By similarity. Cytoplasm By similarity. Cytoplasmcytoskeletonmicrotubule organizing centercentrosomecentriolar satellite By similarity.

Disruption phenotype

In mice obesity is associated with hyperleptinemia and resistance to the anorectic and weight-reducing effects of leptinan mice are resistant to the metabolic actions of leptin. Ref.5

Ontologies

Keywords
   Biological processCilium biogenesis/degradation
Protein transport
Transport
   Cellular componentCell membrane
Cell projection
Cilium
Cytoplasm
Cytoskeleton
Membrane
   DomainCoiled coil
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processGolgi to plasma membrane protein transport

Inferred from electronic annotation. Source: Ensembl

adult behavior

Inferred from mutant phenotype PubMed 15539463. Source: MGI

artery smooth muscle contraction

Inferred from mutant phenotype PubMed 20852044. Source: MGI

brain morphogenesis

Inferred from mutant phenotype PubMed 18032602. Source: MGI

cartilage development

Inferred from mutant phenotype PubMed 19195025. Source: MGI

cerebral cortex development

Inferred from mutant phenotype PubMed 18032602. Source: MGI

cilium assembly

Inferred from mutant phenotype PubMed 18299575. Source: BHF-UCL

cilium morphogenesis

Inferred from mutant phenotype PubMed 18299575. Source: BHF-UCL

fat cell differentiation

Inferred from expression pattern PubMed 17379567. Source: BHF-UCL

hippocampus development

Inferred from mutant phenotype PubMed 18032602. Source: MGI

leptin-mediated signaling pathway

Inferred from mutant phenotype PubMed 19150989. Source: MGI

negative regulation of appetite by leptin-mediated signaling pathway

Inferred from mutant phenotype PubMed 19150989. Source: BHF-UCL

negative regulation of gene expression

Inferred from mutant phenotype Ref.5PubMed 19150989. Source: MGI

negative regulation of multicellular organism growth

Inferred from mutant phenotype PubMed 15539463. Source: MGI

photoreceptor cell maintenance

Inferred from mutant phenotype PubMed 15539463. Source: MGI

positive regulation of multicellular organism growth

Inferred from mutant phenotype Ref.5. Source: MGI

protein localization

Inferred from mutant phenotype PubMed 15539463PubMed 22228099. Source: MGI

protein localization to organelle

Inferred from direct assay PubMed 18334641. Source: BHF-UCL

regulation of cilium beat frequency involved in ciliary motility

Inferred from mutant phenotype PubMed 18299575. Source: BHF-UCL

response to leptin

Inferred from mutant phenotype Ref.5. Source: MGI

sperm axoneme assembly

Inferred from mutant phenotype PubMed 15539463. Source: MGI

striatum development

Inferred from mutant phenotype PubMed 18032602. Source: MGI

vasodilation

Inferred from mutant phenotype PubMed 20852044. Source: MGI

   Cellular_componentBBSome

Inferred from direct assay PubMed 20080638PubMed 22500027. Source: MGI

ciliary basal body

Inferred from sequence orthology PubMed 22922713. Source: MGI

ciliary membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

cytoplasm

Inferred from electronic annotation. Source: UniProtKB-SubCell

motile cilium

Inferred from mutant phenotype PubMed 18299575. Source: BHF-UCL

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 721721Bardet-Biedl syndrome 2 protein homolog
PRO_0000064844

Regions

Coiled coil325 – 36945 Potential

Sequences

Sequence LengthMass (Da)Tools
Q9CWF6 [UniParc].

Last modified June 1, 2001. Version 1.
Checksum: C91D9B7834B614F4

FASTA72179,932
        10         20         30         40         50         60 
MLLPVFTLKL RHKISPRMVA IGRYDGTHPC LAAATQAGKV FIHNPHTRSQ HFSASRVFQS 

        70         80         90        100        110        120 
PLESDVSLLN INQTVSCLGS GVLNPELGYD TLLVGTQTSL LAYDIYNNSD LFYREVSDGA 

       130        140        150        160        170        180 
NAIVLGTLGD IAPPLAIIGG NCALQGFDHE GNDLFWTVTG DNVHSLALCD FDGDGKTELL 

       190        200        210        220        230        240 
VGSEDFDIRV FKEDEIVAEM TETEIVTSLC PMYGSRFGYA LSNGTVGVYD KTARYWRIKS 

       250        260        270        280        290        300 
KNHAMSIHAF DINSDGVCEL ITGWSNGKVD ARSDRTGEVI FKDNFSSAVA GVVEGDYRMD 

       310        320        330        340        350        360 
GHVQLICCSV DGEIRGYLPG TAEMKGNLLD TSVEQDLIRE LSQKKQNLLL ELRNYEESTK 

       370        380        390        400        410        420 
AELSSPLNEA DGQKGIIPAN TRLHTALSVN MGNDLQDAHA ELGISTSNDT IIRAVLIFAE 

       430        440        450        460        470        480 
GIFVGESHVV HPSIHNLSSS LRVPITPPKD VPVDLHLKTF VGYRSSTQFH VFELTRQLPR 

       490        500        510        520        530        540 
FTMYALTSPD AASEPVSYVN FSVAERTQRM VTWLNQNFLL PEDSNVQNSP FHVCFTSLRN 

       550        560        570        580        590        600 
GGQLYIKMKQ SGEITVNTDD IDLAGDIIQS IASFFAIEDL QVEADFPVYF EELRKVLVKV 

       610        620        630        640        650        660 
DEYHSVHQKL SADMADNSNL IRSLLVRAED ARLMRDMKTM KSRYMELYDL NKDLLNGYKI 

       670        680        690        700        710        720 
RCNNHTELLG NLKAVNQAIQ RAGRLRVGKP KNQVISACRD AIRSNNINTL FRIMRVGTAP 


S 

« Hide

References

« Hide 'large scale' references
[1]"Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2)."
Nishimura D.Y., Searby C.C., Carmi R., Elbedour K., Van Maldergem L., Fulton A.B., Lam B.L., Powell B.R., Swiderski R.E., Bugge K.E., Haider N.B., Kwitek-Black A.E., Ying L., Duhl D.M., Gorman S.M., Heon E., Iannaccone A., Bonneau D. expand/collapse author list , Biesecker L.G., Jacobson S.G., Stone E.M., Sheffield V.C.
Hum. Mol. Genet. 10:865-874(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
Strain: Swiss Webster / NIH.
Tissue: Fetus.
[2]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: C57BL/6J.
Tissue: Embryonic stem cell.
[3]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
Strain: Czech II.
Tissue: Mammary gland.
[4]"A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened."
Seo S., Zhang Q., Bugge K., Breslow D.K., Searby C.C., Nachury M.V., Sheffield V.C.
PLoS Genet. 7:E1002358-E1002358(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION IN THE BBSOME COMPLEX.
[5]"Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome."
Rahmouni K., Fath M.A., Seo S., Thedens D.R., Berry C.J., Weiss R., Nishimura D.Y., Sheffield V.C.
J. Clin. Invest. 118:1458-1467(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF342737 mRNA. Translation: AAK28553.1.
AK010779 mRNA. Translation: BAB27176.1.
BC057184 mRNA. Translation: AAH57184.1.
RefSeqNP_080392.1. NM_026116.2.
UniGeneMm.292107.

3D structure databases

ProteinModelPortalQ9CWF6.
SMRQ9CWF6. Positions 16-47, 74-112, 143-184, 246-309.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

DIPDIP-60351N.
IntActQ9CWF6. 12 interactions.

PTM databases

PhosphoSiteQ9CWF6.

Proteomic databases

PaxDbQ9CWF6.
PRIDEQ9CWF6.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000034206; ENSMUSP00000034206; ENSMUSG00000031755.
GeneID67378.
KEGGmmu:67378.
UCSCuc009mvs.1. mouse.

Organism-specific databases

CTD583.
MGIMGI:2135267. Bbs2.

Phylogenomic databases

eggNOGNOG87621.
GeneTreeENSGT00390000017113.
HOGENOMHOG000007549.
HOVERGENHBG031114.
InParanoidQ9CWF6.
KOK16747.
OMAKVDEYHS.
OrthoDBEOG7TMZRK.
PhylomeDBQ9CWF6.
TreeFamTF313236.

Gene expression databases

BgeeQ9CWF6.
CleanExMM_BBS2.
GenevestigatorQ9CWF6.

Family and domain databases

Gene3D2.130.10.10. 2 hits.
InterProIPR016616. Bardet-Biedl_syndrome_2_prot.
IPR015943. WD40/YVTN_repeat-like_dom.
IPR017986. WD40_repeat_dom.
[Graphical view]
PANTHERPTHR32465:SF0. PTHR32465:SF0. 1 hit.
PIRSFPIRSF013684. BBS2. 1 hit.
SUPFAMSSF50978. SSF50978. 2 hits.
ProtoNetSearch...

Other

NextBio324396.
PROQ9CWF6.
SOURCESearch...

Entry information

Entry nameBBS2_MOUSE
AccessionPrimary (citable) accession number: Q9CWF6
Entry history
Integrated into UniProtKB/Swiss-Prot: May 2, 2002
Last sequence update: June 1, 2001
Last modified: April 16, 2014
This is version 96 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot