Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q96Q15 (SMG1_HUMAN) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 113. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (6) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Serine/threonine-protein kinase SMG1

Short name=SMG-1
Short name=hSMG-1
EC=2.7.11.1
Alternative name(s):
61E3.4
Lambda/iota protein kinase C-interacting protein
Short name=Lambda-interacting protein
Gene names
Name:SMG1
Synonyms:ATX, KIAA0421, LIP
OrganismHomo sapiens (Human) [Reference proteome]
Taxonomic identifier9606 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo

Protein attributes

Sequence length3661 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. Ref.2 Ref.3 Ref.4 Ref.12

Catalytic activity

ATP + a protein = ADP + a phosphoprotein. Ref.17

Cofactor

Manganese. Ref.3

Enzyme regulation

Inhibited by caffeine, LY294002 and wortmannin. Ref.2 Ref.3 Ref.4

Subunit structure

Component of the SMG1C complex composed of SMG1, SMG8 and SMG9; the recruitment of SMG8 to SMG1 N-terminus induces a large conformational change in the SMG1 C-terminal head domain containing the catalytic domain. Component of the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. Interacts with PRKCI. Interacts with TELO2 and TTI1. Interacts with RUVBL1 and RUVBL2. Interacts with UPF2. Ref.2 Ref.8 Ref.10 Ref.11 Ref.12 Ref.17 Ref.20 Ref.21 Ref.22 Ref.25

Subcellular location

Nucleus. Cytoplasm Ref.4.

Tissue specificity

Widely expressed, with highest level in heart and skeletal muscle. Expressed in placenta, brain, lung and spleen, but not in liver. Ref.4 Ref.8

Post-translational modification

Autophosphorylated Probable. Ref.2 Ref.3 Ref.4

Miscellaneous

This gene is located in a region of chromosome 16 that contains 2 segmental duplications. Other genes that are highly related to this exist, but they probably represent pseudogenes.

Sequence similarities

Belongs to the PI3/PI4-kinase family.

Contains 1 FAT domain.

Contains 1 FATC domain.

Contains 1 HEAT repeat.

Contains 1 PI3K/PI4K domain.

Sequence caution

The sequence AAA86535.2 differs from that shown. Reason: Erroneous initiation. Translation N-terminally extended.

Ontologies

Keywords
   Biological processDNA damage
DNA repair
Nonsense-mediated mRNA decay
   Cellular componentCytoplasm
Nucleus
   Coding sequence diversityAlternative splicing
Polymorphism
   LigandATP-binding
Manganese
Metal-binding
Nucleotide-binding
   Molecular functionKinase
Serine/threonine-protein kinase
Transferase
   PTMAcetylation
Phosphoprotein
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processDNA repair

Inferred from electronic annotation. Source: UniProtKB-KW

RNA metabolic process

Traceable author statement. Source: Reactome

gene expression

Traceable author statement. Source: Reactome

mRNA export from nucleus

Traceable author statement PubMed 16488880. Source: UniProtKB

mRNA metabolic process

Traceable author statement. Source: Reactome

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay

Inferred from direct assay Ref.2. Source: UniProtKB

peptidyl-serine phosphorylation

Inferred from direct assay Ref.2Ref.4. Source: UniProtKB

phosphatidylinositol phosphorylation

Inferred from direct assay Ref.3. Source: UniProtKB

protein autophosphorylation

Inferred from direct assay Ref.3Ref.2. Source: UniProtKB

response to stress

Inferred from direct assay Ref.4. Source: UniProtKB

   Cellular_componentcytoplasm

Inferred from direct assay Ref.10Ref.4. Source: UniProtKB

cytosol

Traceable author statement. Source: Reactome

nucleus

Inferred from direct assay Ref.10Ref.4. Source: UniProtKB

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

metal ion binding

Inferred from electronic annotation. Source: UniProtKB-KW

poly(A) RNA binding

Inferred from direct assay PubMed 22681889. Source: UniProtKB

protein binding

Inferred from physical interaction Ref.2Ref.17. Source: UniProtKB

protein kinase activity

Traceable author statement Ref.10. Source: UniProtKB

protein serine/threonine kinase activity

Inferred from direct assay Ref.2Ref.4Ref.17. Source: UniProtKB

Complete GO annotation...

Binary interactions

With

Entry

#Exp.

IntAct

Notes

PABPC1P119402EBI-1049832,EBI-81531
UPF2Q9HAU57EBI-1049832,EBI-372073

Alternative products

This entry describes 4 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q96Q15-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q96Q15-2)

The sequence of this isoform differs from the canonical sequence as follows:
     1-140: Missing.
Isoform 3 (identifier: Q96Q15-3)

The sequence of this isoform differs from the canonical sequence as follows:
     1-630: Missing.
Isoform 4 (identifier: Q96Q15-4)

Also known as: BLIP;

The sequence of this isoform differs from the canonical sequence as follows:
     1-1269: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 36613661Serine/threonine-protein kinase SMG1
PRO_0000229791

Regions

Domain1131 – 1866736FAT
Repeat1817 – 185236HEAT
Domain2150 – 2478329PI3K/PI4K
Domain3629 – 366133FATC
Region1 – 19771977Interaction with SMG8 and SMG9

Amino acid modifications

Modified residue1731N6-acetyllysine Ref.19
Modified residue35501Phosphothreonine Ref.14
Modified residue35561Phosphoserine Ref.14
Modified residue35701Phosphoserine Ref.15
Modified residue35731Phosphothreonine Ref.23

Natural variations

Alternative sequence1 – 12691269Missing in isoform 4.
VSP_017746
Alternative sequence1 – 630630Missing in isoform 3.
VSP_017747
Alternative sequence1 – 140140Missing in isoform 2.
VSP_017748
Natural variant351A → T. Ref.27
Corresponds to variant rs12051350 [ dbSNP | Ensembl ].
VAR_041623
Natural variant1261R → C. Ref.27
VAR_041624
Natural variant1441S → C. Ref.4 Ref.27
VAR_041625
Natural variant1511N → Y. Ref.27
VAR_041626
Natural variant1601D → N. Ref.27
VAR_041627
Natural variant1671A → V. Ref.27
VAR_041628
Natural variant3201D → G. Ref.27
VAR_041629
Natural variant4651G → S. Ref.27
VAR_041630
Natural variant5461H → R. Ref.27
VAR_041631
Natural variant5881A → S. Ref.27
VAR_041632
Natural variant6121I → K. Ref.4 Ref.27
VAR_041633
Natural variant7531S → C. Ref.27
VAR_041634
Natural variant8091S → C. Ref.27
VAR_041635
Natural variant8121R → C. Ref.27
VAR_041636
Natural variant8291V → I. Ref.27
VAR_041637
Natural variant8321N → D. Ref.27
Corresponds to variant rs192246457 [ dbSNP | Ensembl ].
VAR_041638
Natural variant9521A → G. Ref.27
VAR_041639
Natural variant9691N → S. Ref.27
VAR_041640
Natural variant10161F → L. Ref.27
VAR_041641
Natural variant10291R → Q. Ref.27
VAR_041642
Natural variant10721T → S. Ref.27
VAR_041643
Natural variant11031N → H. Ref.27
VAR_041644
Natural variant12751P → R. Ref.27
VAR_041645
Natural variant12921Q → P. Ref.27
VAR_041646
Natural variant13321I → V. Ref.27
VAR_041647
Natural variant13581S → P. Ref.27
VAR_041648
Natural variant14181R → T. Ref.27
Corresponds to variant rs17731779 [ dbSNP | Ensembl ].
VAR_041649
Natural variant21711S → C in a breast pleomorphic lobular carcinoma sample; somatic mutation. Ref.27
VAR_041650
Natural variant22581G → S. Ref.27
VAR_041651
Natural variant23451M → K. Ref.27
VAR_041652
Natural variant27301Q → E. Ref.27
VAR_041653
Natural variant28891G → S. Ref.27
Corresponds to variant rs35952340 [ dbSNP | Ensembl ].
VAR_041654
Natural variant28991P → A. Ref.27
VAR_041655
Natural variant32391I → T in a breast infiltrating ductal carcinoma sample; somatic mutation. Ref.27
VAR_041656
Natural variant35831K → Q in a breast infiltrating ductal carcinoma sample; somatic mutation. Ref.27
VAR_041657

Experimental info

Mutagenesis23351D → A: Loss of function. Ref.2 Ref.3 Ref.4
Sequence conflict141G → GGGGG in BAB70696. Ref.2
Sequence conflict201K → N in BAB70696. Ref.2
Sequence conflict221P → S in BAB70696. Ref.2
Sequence conflict401D → G in BAB70696. Ref.2
Sequence conflict6861S → A in BAB70696. Ref.2
Sequence conflict7431K → R in BAB70696. Ref.2
Sequence conflict11931C → F in BAB70696. Ref.2
Sequence conflict20091K → R in BAB70696. Ref.2
Sequence conflict20771S → N in AAK58892. Ref.1

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified February 8, 2011. Version 3.
Checksum: 216A55F3121F5829

FASTA3,661410,501
        10         20         30         40         50         60 
MSRRAPGSRL SSGGGGGGTK YPRSWNDWQP RTDSASADPD NLKYSSSRDR GGSSSYGLQP 

        70         80         90        100        110        120 
SNSAVVSRQR HDDTRVHADI QNDEKGGYSV NGGSGENTYG RKSLGQELRV NNVTSPEFTS 

       130        140        150        160        170        180 
VQHGSRALAT KDMRKSQERS MSYSDESRLS NLLRRITRED DRDRRLATVK QLKEFIQQPE 

       190        200        210        220        230        240 
NKLVLVKQLD NILAAVHDVL NESSKLLQEL RQEGACCLGL LCASLSYEAE KIFKWIFSKF 

       250        260        270        280        290        300 
SSSAKDEVKL LYLCATYKAL ETVGEKKAFS SVMQLVMTSL QSILENVDTP ELLCKCVKCI 

       310        320        330        340        350        360 
LLVARCYPHI FSTNFRDTVD ILVGWHIDHT QKPSLTQQVS GWLQSLEPFW VADLAFSTTL 

       370        380        390        400        410        420 
LGQFLEDMEA YAEDLSHVAS GESVDEDVPP PSVSLPKLAA LLRVFSTVVR SIGERFSPIR 

       430        440        450        460        470        480 
GPPITEAYVT DVLYRVMRCV TAANQVFFSE AVLTAANECV GVLLGSLDPS MTIHCDMVIT 

       490        500        510        520        530        540 
YGLDQLENCQ TCGTDYIISV LNLLTLIVEQ INTKLPSSFV EKLFIPSSKL LFLRYHKEKE 

       550        560        570        580        590        600 
VVAVAHAVYQ AVLSLKNIPV LETAYKLILG EMTCALNNLL HSLQLPEACS EIKHEAFKNH 

       610        620        630        640        650        660 
VFNVDNAKFV VIFDLSALTT IGNAKNSLIG MWALSPTVFA LLSKNLMIVH SDLAVHFPAI 

       670        680        690        700        710        720 
QYAVLYTLYS HCTRHDHFIS SSLSSSSPSL FDGAVISTVT TATKKHFSII LNLLGILLKK 

       730        740        750        760        770        780 
DNLNQDTRKL LMTWALEAAV LMKKSETYAP LFSLPSFHKF CKGLLANTLV EDVNICLQAC 

       790        800        810        820        830        840 
SSLHALSSSL PDDLLQRCVD VCRVQLVHSG TRIRQAFGKL LKSIPLDVVL SNNNHTEIQE 

       850        860        870        880        890        900 
ISLALRSHMS KAPSNTFHPQ DFSDVISFIL YGNSHRTGKD NWLERLFYSC QRLDKRDQST 

       910        920        930        940        950        960 
IPRNLLKTDA VLWQWAIWEA AQFTVLSKLR TPLGRAQDTF QTIEGIIRSL AAHTLNPDQD 

       970        980        990       1000       1010       1020 
VSQWTTADND EGHGNNQLRL VLLLQYLENL EKLMYNAYEG CANALTSPPK VIRTFFYTNR 

      1030       1040       1050       1060       1070       1080 
QTCQDWLTRI RLSIMRVGLL AGQPAVTVRH GFDLLTEMKT TSLSQGNELE VTIMMVVEAL 

      1090       1100       1110       1120       1130       1140 
CELHCPEAIQ GIAVWSSSIV GKNLLWINSV AQQAEGRFEK ASVEYQEHLC AMTGVDCCIS 

      1150       1160       1170       1180       1190       1200 
SFDKSVLTLA NAGRNSASPK HSLNGESRKT VLSKPTDSSP EVINYLGNKA CECYISIADW 

      1210       1220       1230       1240       1250       1260 
AAVQEWQNAI HDLKKSTSST SLNLKADFNY IKSLSSFESG KFVECTEQLE LLPGENINLL 

      1270       1280       1290       1300       1310       1320 
AGGSKEKIDM KKLLPNMLSP DPRELQKSIE VQLLRSSVCL ATALNPIEQD QKWQSITENV 

      1330       1340       1350       1360       1370       1380 
VKYLKQTSRI AIGPLRLSTL TVSQSLPVLS TLQLYCSSAL ENTVSNRLST EDCLIPLFSE 

      1390       1400       1410       1420       1430       1440 
ALRSCKQHDV RPWMQALRYT MYQNQLLEKI KEQTVPIRSH LMELGLTAAK FARKRGNVSL 

      1450       1460       1470       1480       1490       1500 
ATRLLAQCSE VQLGKTTTAQ DLVQHFKKLS TQGQVDEKWG PELDIEKTKL LYTAGQSTHA 

      1510       1520       1530       1540       1550       1560 
MEMLSSCAIS FCKSVKAEYA VAKSILTLAK WIQAEWKEIS GQLKQVYRAQ HQQNFTGLST 

      1570       1580       1590       1600       1610       1620 
LSKNILTLIE LPSVNTMEEE YPRIESESTV HIGVGEPDFI LGQLYHLSSV QAPEVAKSWA 

      1630       1640       1650       1660       1670       1680 
ALASWAYRWG RKVVDNASQG EGVRLLPREK SEVQNLLPDT ITEEEKERIY GILGQAVCRP 

      1690       1700       1710       1720       1730       1740 
AGIQDEDITL QITESEDNEE DDMVDVIWRQ LISSCPWLSE LDESATEGVI KVWRKVVDRI 

      1750       1760       1770       1780       1790       1800 
FSLYKLSCSA YFTFLKLNAG QIPLDEDDPR LHLSHRVEQS TDDMIVMATL RLLRLLVKHA 

      1810       1820       1830       1840       1850       1860 
GELRQYLEHG LETTPTAPWR GIIPQLFSRL NHPEVYVRQS ICNLLCRVAQ DSPHLILYPA 

      1870       1880       1890       1900       1910       1920 
IVGTISLSSE SQASGNKFST AIPTLLGNIQ GEELLVSECE GGSPPASQDS NKDEPKSGLN 

      1930       1940       1950       1960       1970       1980 
EDQAMMQDCY SKIVDKLSSA NPTMVLQVQM LVAELRRVTV LWDELWLGVL LQQHMYVLRR 

      1990       2000       2010       2020       2030       2040 
IQQLEDEVKR VQNNNTLRKE EKIAIMREKH TALMKPIVFA LEHVRSITAA PAETPHEKWF 

      2050       2060       2070       2080       2090       2100 
QDNYGDAIEN ALEKLKTPLN PAKPGSSWIP FKEIMLSLQQ RAQKRASYIL RLEEISPWLA 

      2110       2120       2130       2140       2150       2160 
AMTNTEIALP GEVSARDTVT IHSVGGTITI LPTKTKPKKL LFLGSDGKSY PYLFKGLEDL 

      2170       2180       2190       2200       2210       2220 
HLDERIMQFL SIVNTMFATI NRQETPRFHA RHYSVTPLGT RSGLIQWVDG ATPLFGLYKR 

      2230       2240       2250       2260       2270       2280 
WQQREAALQA QKAQDSYQTP QNPGIVPRPS ELYYSKIGPA LKTVGLSLDV SRRDWPLHVM 

      2290       2300       2310       2320       2330       2340 
KAVLEELMEA TPPNLLAKEL WSSCTTPDEW WRVTQSYARS TAVMSMVGYI IGLGDRHLDN 

      2350       2360       2370       2380       2390       2400 
VLIDMTTGEV VHIDYNVCFE KGKSLRVPEK VPFRMTQNIE TALGVTGVEG VFRLSCEQVL 

      2410       2420       2430       2440       2450       2460 
HIMRRGRETL LTLLEAFVYD PLVDWTAGGE AGFAGAVYGG GGQQAESKQS KREMEREITR 

      2470       2480       2490       2500       2510       2520 
SLFSSRVAEI KVNWFKNRDE MLVVLPKLDG SLDEYLSLQE QLTDVEKLQG KLLEEIEFLE 

      2530       2540       2550       2560       2570       2580 
GAEGVDHPSH TLQHRYSEHT QLQTQQRAVQ EAIQVKLNEF EQWITHYQAA FNNLEATQLA 

      2590       2600       2610       2620       2630       2640 
SLLQEISTQM DLGPPSYVPA TAFLQNAGQA HLISQCEQLE GEVGALLQQR RSVLRGCLEQ 

      2650       2660       2670       2680       2690       2700 
LHHYATVALQ YPKAIFQKHR IEQWKTWMEE LICNTTVERC QELYRKYEMQ YAPQPPPTVC 

      2710       2720       2730       2740       2750       2760 
QFITATEMTL QRYAADINSR LIRQVERLKQ EAVTVPVCED QLKEIERCIK VFLHENGEEG 

      2770       2780       2790       2800       2810       2820 
SLSLASVIIS ALCTLTRRNL MMEGAASSAG EQLVDLTSRD GAWFLEELCS MSGNVTCLVQ 

      2830       2840       2850       2860       2870       2880 
LLKQCHLVPQ DLDIPNPMEA SETVHLANGV YTSLQELNSN FRQIIFPEAL RCLMKGEYTL 

      2890       2900       2910       2920       2930       2940 
ESMLHELDGL IEQTTDGVPL QTLVESLQAY LRNAAMGLEE ETHAHYIDVA RLLHAQYGEL 

      2950       2960       2970       2980       2990       3000 
IQPRNGSVDE TPKMSAGQML LVAFDGMFAQ VETAFSLLVE KLNKMEIPIA WRKIDIIREA 

      3010       3020       3030       3040       3050       3060 
RSTQVNFFDD DNHRQVLEEI FFLKRLQTIK EFFRLCGTFS KTLSGSSSLE DQNTVNGPVQ 

      3070       3080       3090       3100       3110       3120 
IVNVKTLFRN SCFSEDQMAK PIKAFTADFV RQLLIGLPNQ ALGLTLCSFI SALGVDIIAQ 

      3130       3140       3150       3160       3170       3180 
VEAKDFGAES KVSVDDLCKK AVEHNIQIGK FSQLVMNRAT VLASSYDTAW KKHDLVRRLE 

      3190       3200       3210       3220       3230       3240 
TSISSCKTSL QRVQLHIAMF QWQHEDLLIN RPQAMSVTPP PRSAILTSMK KKLHTLSQIE 

      3250       3260       3270       3280       3290       3300 
TSIATVQEKL AALESSIEQR LKWAGGANPA LAPVLQDFEA TIAERRNLVL KESQRASQVT 

      3310       3320       3330       3340       3350       3360 
FLCSNIIHFE SLRTRTAEAL NLDAALFELI KRCQQMCSFA SQFNSSVSEL ELRLLQRVDT 

      3370       3380       3390       3400       3410       3420 
GLEHPIGSSE WLLSAHKQLT QDMSTQRAIQ TEKEQQIETV CETIQNLVDN IKTVLTGHNR 

      3430       3440       3450       3460       3470       3480 
QLGDVKHLLK AMAKDEEAAL ADGEDVPYEN SVRQFLGEYK SWQDNIQTVL FTLVQAMGQV 

      3490       3500       3510       3520       3530       3540 
RSQEHVEMLQ EITPTLKELK TQSQSIYNNL VSFASPLVTD ATNECSSPTS SATYQPSFAA 

      3550       3560       3570       3580       3590       3600 
AVRSNTGQKT QPDVMSQNAR KLIQKNLATS ADTPPSTVPG TGKSVACSPK KAVRDPKTGK 

      3610       3620       3630       3640       3650       3660 
AVQERNSYAV SVWKRVKAKL EGRDVDPNRR MSVAEQVDYV IKEATNLDNL AQLYEGWTAW 


V 

« Hide

Isoform 2 [UniParc].

Checksum: C2DDDEEA77C6D976
Show »

FASTA3,521395,382
Isoform 3 [UniParc].

Checksum: 1932F4BF6722348C
Show »

FASTA3,031340,674
Isoform 4 (BLIP) [UniParc].

Checksum: D63ECA30F812D7A6
Show »

FASTA2,392269,425

References

« Hide 'large scale' references
[1]"Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62."
Sanchez P., De Carcer G., Sandoval I.V., Moscat J., Diaz-Meco M.T.
Mol. Cell. Biol. 18:3069-3080(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 4).
[2]"Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay."
Yamashita A., Ohnishi T., Kashima I., Taya Y., Ohno S.
Genes Dev. 15:2215-2228(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), FUNCTION, PHOSPHORYLATION OF RENT1, ALTERNATIVE SPLICING, ENZYME REGULATION, PHOSPHORYLATION, INTERACTION WITH RENT1; UPF2 AND UPF3, MUTAGENESIS OF ASP-2335.
[3]"Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein."
Denning G., Jamieson L., Maquat L.E., Thompson E.A., Fields A.P.
J. Biol. Chem. 276:22709-22714(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 3), FUNCTION, PHOSPHORYLATION OF RENT1, COFACTOR, ENZYME REGULATION, MUTAGENESIS OF ASP-2335.
[4]"The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells."
Brumbaugh K.M., Otterness D.M., Geisen C., Oliveira V., Brognard J., Li X., Lejeune F., Tibbetts R.S., Maquat L.E., Abraham R.T.
Mol. Cell 14:585-598(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), FUNCTION, PHOSPHORYLATION OF TP53, TISSUE SPECIFICITY, SUBCELLULAR LOCATION, ENZYME REGULATION, MUTAGENESIS OF ASP-2335, VARIANTS CYS-144 AND LYS-612.
[5]"The sequence and analysis of duplication-rich human chromosome 16."
Martin J., Han C., Gordon L.A., Terry A., Prabhakar S., She X., Xie G., Hellsten U., Chan Y.M., Altherr M., Couronne O., Aerts A., Bajorek E., Black S., Blumer H., Branscomb E., Brown N.C., Bruno W.J. expand/collapse author list , Buckingham J.M., Callen D.F., Campbell C.S., Campbell M.L., Campbell E.W., Caoile C., Challacombe J.F., Chasteen L.A., Chertkov O., Chi H.C., Christensen M., Clark L.M., Cohn J.D., Denys M., Detter J.C., Dickson M., Dimitrijevic-Bussod M., Escobar J., Fawcett J.J., Flowers D., Fotopulos D., Glavina T., Gomez M., Gonzales E., Goodstein D., Goodwin L.A., Grady D.L., Grigoriev I., Groza M., Hammon N., Hawkins T., Haydu L., Hildebrand C.E., Huang W., Israni S., Jett J., Jewett P.B., Kadner K., Kimball H., Kobayashi A., Krawczyk M.-C., Leyba T., Longmire J.L., Lopez F., Lou Y., Lowry S., Ludeman T., Manohar C.F., Mark G.A., McMurray K.L., Meincke L.J., Morgan J., Moyzis R.K., Mundt M.O., Munk A.C., Nandkeshwar R.D., Pitluck S., Pollard M., Predki P., Parson-Quintana B., Ramirez L., Rash S., Retterer J., Ricke D.O., Robinson D.L., Rodriguez A., Salamov A., Saunders E.H., Scott D., Shough T., Stallings R.L., Stalvey M., Sutherland R.D., Tapia R., Tesmer J.G., Thayer N., Thompson L.S., Tice H., Torney D.C., Tran-Gyamfi M., Tsai M., Ulanovsky L.E., Ustaszewska A., Vo N., White P.S., Williams A.L., Wills P.L., Wu J.-R., Wu K., Yang J., DeJong P., Bruce D., Doggett N.A., Deaven L., Schmutz J., Grimwood J., Richardson P., Rokhsar D.S., Eichler E.E., Gilna P., Lucas S.M., Myers R.M., Rubin E.M., Pennacchio L.A.
Nature 432:988-994(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[6]"Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro."
Ishikawa K., Nagase T., Nakajima D., Seki N., Ohira M., Miyajima N., Tanaka A., Kotani H., Nomura N., Ohara O.
DNA Res. 4:307-313(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 1674-3661.
Tissue: Brain.
[7]"Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones."
Nakajima D., Okazaki N., Yamakawa H., Kikuno R., Ohara O., Nagase T.
DNA Res. 9:99-106(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: SEQUENCE REVISION.
[8]"Lambda-interacting protein, a novel protein that specifically interacts with the zinc finger domain of the atypical protein kinase C isotype lambda/iota and stimulates its kinase activity in vitro and in vivo."
Diaz-Meco M.T., Municio M.M., Sanchez P., Lozano J., Moscat J.
Mol. Cell. Biol. 16:105-114(1996) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 2878-3661, TISSUE SPECIFICITY, INTERACTION WITH PRKCI.
[9]"Divergent origins and concerted expansion of two segmental duplications on chromosome 16."
Eichler E.E., Johnson M.E., Alkan C., Tuzun E., Sahinalp C., Misceo D., Archidiacono N., Rocchi M.
J. Hered. 92:462-468(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: DUPLICATION.
[10]"Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7."
Ohnishi T., Yamashita A., Kashima I., Schell T., Anders K.R., Grimson A., Hachiya T., Hentze M.W., Anderson P., Ohno S.
Mol. Cell 12:1187-1200(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMG5.
[11]"Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1."
Chiu S.-Y., Serin G., Ohara O., Maquat L.E.
RNA 9:77-87(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RENT1; UPF2; EST1A AND UPF3B.
[12]"Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay."
Kashima I., Yamashita A., Izumi N., Kataoka N., Morishita R., Hoshino S., Ohno M., Dreyfuss G., Ohno S.
Genes Dev. 20:355-367(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH UPF2, IDENTIFICATION IN THE SURF COMPLEX.
[13]"A probability-based approach for high-throughput protein phosphorylation analysis and site localization."
Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.
Nat. Biotechnol. 24:1285-1292(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[14]"ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage."
Matsuoka S., Ballif B.A., Smogorzewska A., McDonald E.R. III, Hurov K.E., Luo J., Bakalarski C.E., Zhao Z., Solimini N., Lerenthal Y., Shiloh Y., Gygi S.P., Elledge S.J.
Science 316:1160-1166(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-3550 AND SER-3556, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Embryonic kidney.
[15]"A quantitative atlas of mitotic phosphorylation."
Dephoure N., Zhou C., Villen J., Beausoleil S.A., Bakalarski C.E., Elledge S.J., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 105:10762-10767(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-3570, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[16]"Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[17]"SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay."
Yamashita A., Izumi N., Kashima I., Ohnishi T., Saari B., Katsuhata Y., Muramatsu R., Morita T., Iwamatsu A., Hachiya T., Kurata R., Hirano H., Anderson P., Ohno S.
Genes Dev. 23:1091-1105(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: CATALYTIC ACTIVITY, IDENTIFICATION IN THE SMG1C COMPLEX.
[18]"Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Leukemic T-cell.
[19]"Lysine acetylation targets protein complexes and co-regulates major cellular functions."
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.
Science 325:834-840(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: ACETYLATION [LARGE SCALE ANALYSIS] AT LYS-173, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[20]"Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly."
Kaizuka T., Hara T., Oshiro N., Kikkawa U., Yonezawa K., Takehana K., Iemura S., Natsume T., Mizushima N.
J. Biol. Chem. 285:20109-20116(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TELO2 AND TTI1.
[21]"A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability."
Hurov K.E., Cotta-Ramusino C., Elledge S.J.
Genes Dev. 24:1939-1950(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH TTI1.
[22]"AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay."
Izumi N., Yamashita A., Iwamatsu A., Kurata R., Nakamura H., Saari B., Hirano H., Anderson P., Ohno S.
Sci. Signal. 3:RA27-RA27(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH RUVBL1 AND RUVBL2.
[23]"Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT THR-3573, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Cervix carcinoma.
[24]"Initial characterization of the human central proteome."
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Buerckstuemmer T., Bennett K.L., Superti-Furga G., Colinge J.
BMC Syst. Biol. 5:17-17(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[25]"The nonsense-mediated mRNA decay SMG-1 kinase is regulated by large-scale conformational changes controlled by SMG-8."
Arias-Palomo E., Yamashita A., Fernandez I.S., Nunez-Ramirez R., Bamba Y., Izumi N., Ohno S., Llorca O.
Genes Dev. 25:153-164(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH SMG8 AND SMG9, ELECTRON MICROSCOPY OF THE SMG1C COMPLEX.
[26]"System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
[27]"Patterns of somatic mutation in human cancer genomes."
Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G., Davies H., Teague J., Butler A., Stevens C., Edkins S., O'Meara S., Vastrik I., Schmidt E.E., Avis T., Barthorpe S., Bhamra G., Buck G. expand/collapse author list , Choudhury B., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Jenkinson A., Jones D., Menzies A., Mironenko T., Perry J., Raine K., Richardson D., Shepherd R., Small A., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Cahill D.P., Louis D.N., Goldstraw P., Nicholson A.G., Brasseur F., Looijenga L., Weber B.L., Chiew Y.-E., DeFazio A., Greaves M.F., Green A.R., Campbell P., Birney E., Easton D.F., Chenevix-Trench G., Tan M.-H., Khoo S.K., Teh B.T., Yuen S.T., Leung S.Y., Wooster R., Futreal P.A., Stratton M.R.
Nature 446:153-158(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: VARIANTS [LARGE SCALE ANALYSIS] THR-35; CYS-126; CYS-144; TYR-151; ASN-160; VAL-167; GLY-320; SER-465; ARG-546; SER-588; LYS-612; CYS-753; CYS-809; CYS-812; ILE-829; ASP-832; GLY-952; SER-969; LEU-1016; GLN-1029; SER-1072; HIS-1103; ARG-1275; PRO-1292; VAL-1332; PRO-1358; THR-1418; CYS-2171; SER-2258; LYS-2345; GLU-2730; SER-2889; ALA-2899; THR-3239 AND GLN-3583.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AF186377 mRNA. Translation: AAK58892.1.
AB061371 mRNA. Translation: BAB70696.1.
AY014957 mRNA. Translation: AAK00511.1.
AF395444 mRNA. Translation: AAM73708.1.
AC092287 Genomic DNA. No translation available.
AB007881 mRNA. Translation: BAA24851.2.
U32581 mRNA. Translation: AAA86535.2. Different initiation.
CCDSCCDS45430.1. [Q96Q15-1]
PIRJC6084.
RefSeqNP_055907.3. NM_015092.4. [Q96Q15-1]
UniGeneHs.460179.

3D structure databases

ProteinModelPortalQ96Q15.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid116687. 28 interactions.
IntActQ96Q15. 30 interactions.
MINTMINT-1513197.
STRING9606.ENSP00000402515.

Chemistry

ChEMBLCHEMBL1795195.

PTM databases

PhosphoSiteQ96Q15.

Polymorphism databases

DMDM322510104.

Proteomic databases

MaxQBQ96Q15.
PaxDbQ96Q15.
PRIDEQ96Q15.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENST00000446231; ENSP00000402515; ENSG00000157106. [Q96Q15-1]
GeneID23049.
KEGGhsa:23049.
UCSCuc002dfm.3. human. [Q96Q15-1]

Organism-specific databases

CTD23049.
GeneCardsGC16M018816.
H-InvDBHIX0012849.
HIX0038625.
HIX0202313.
HGNCHGNC:30045. SMG1.
HPAHPA006870.
MIM607032. gene.
neXtProtNX_Q96Q15.
PharmGKBPA164725852.
HUGESearch...
GenAtlasSearch...

Phylogenomic databases

eggNOGCOG5032.
HOGENOMHOG000168703.
HOVERGENHBG093965.
InParanoidQ96Q15.
KOK08873.
OrthoDBEOG7RV9F7.
PhylomeDBQ96Q15.
TreeFamTF352560.

Enzyme and pathway databases

ReactomeREACT_21257. Metabolism of RNA.
REACT_71. Gene Expression.

Gene expression databases

ArrayExpressQ96Q15.
BgeeQ96Q15.
GenevestigatorQ96Q15.

Family and domain databases

Gene3D1.10.1070.11. 2 hits.
InterProIPR016024. ARM-type_fold.
IPR003152. FATC.
IPR011009. Kinase-like_dom.
IPR000403. PI3/4_kinase_cat_dom.
IPR018936. PI3/4_kinase_CS.
IPR014009. PIK_FAT.
[Graphical view]
PfamPF02260. FATC. 1 hit.
PF00454. PI3_PI4_kinase. 1 hit.
[Graphical view]
SMARTSM00146. PI3Kc. 1 hit.
[Graphical view]
SUPFAMSSF48371. SSF48371. 5 hits.
SSF56112. SSF56112. 2 hits.
PROSITEPS51189. FAT. 1 hit.
PS51190. FATC. 1 hit.
PS00916. PI3_4_KINASE_2. 1 hit.
PS50290. PI3_4_KINASE_3. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSSMG1. human.
GeneWikiSMG1_(gene).
GenomeRNAi23049.
NextBio44092.
PROQ96Q15.
SOURCESearch...

Entry information

Entry nameSMG1_HUMAN
AccessionPrimary (citable) accession number: Q96Q15
Secondary accession number(s): O43305 expand/collapse secondary AC list , Q13284, Q8NFX2, Q96QV0, Q96RW3
Entry history
Integrated into UniProtKB/Swiss-Prot: April 4, 2006
Last sequence update: February 8, 2011
Last modified: July 9, 2014
This is version 113 of the entry and version 3 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

MIM cross-references

Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot

Human polymorphisms and disease mutations

Index of human polymorphisms and disease mutations

Human entries with polymorphisms or disease mutations

List of human entries with polymorphisms or disease mutations

Human chromosome 16

Human chromosome 16: entries, gene names and cross-references to MIM