Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Cryptochrome-2

Gene

CRY2

Organism
Arabidopsis thaliana (Mouse-ear cress)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Photoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interacts with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulates the corresponding metabolic and developmental programs (PubMed:21841916). Blue-light absorbing flavoprotein that activates reversible flavin photoreduction via an electron transport chain comprising a tryptophan triad (W-321, W-374 and W-397), or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 16 minutes (PubMed:25428980, PubMed:23398192). Perceives low blue light (LBL) and responds by directly contacting two bHLH transcription factors, PIF4 and PIF5, at chromatin on E-box variant 5'-CA[CT]GTG-3' to promote their activity and stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation and hyponastic growth in low blue light) (PubMed:26724867, PubMed:19558423). In response to blue light, binds to CIB proteins (e.g. BHLH63/CIB1 and BHLH76/CIB5) to activates transcription and floral initiation (PubMed:24130508). Mediates blue light-induced gene expression, floral initiation and hypocotyl elongation through the interaction with SPA1 that prevents formation of SPA1/COP1 complex but stimulates COP1 binding, and thus inhibits COP1-mediated degradation of transcription factors (e.g. CO and HY5) (PubMed:21514160, PubMed:21511872, PubMed:16093319). Promotes flowering time in continuous light (LL) (PubMed:21296763). Involved in shortening the circadian clock period, especially at 27 degrees Celsius, in blue light (BL). Required to maintain clock genes expression rhythm (PubMed:23511208). Triggers nuclear accumulation of ROS in response to blue light illumination (PubMed:26179959). Involved in blue light-dependent stomatal opening, transpiration and inhibition of stem and root growth, probably by regulating abscisic acid (ABA) (PubMed:22147516, PubMed:16093319, PubMed:16703358, PubMed:9482948, PubMed:9565033). Regulates the timing of flowering by promoting the expression of 'FLOWERING LOCUS T' (FT) in vascular bundles. Negatively regulated by 'FLOWERING LOCUS C' (FLC) (PubMed:14605222, PubMed:17259260). General positive regulator of reversible low light-induced chromatin decompaction (PubMed:20935177). Involved in triggering chromatin decondensation during floral transition (PubMed:17470059). Together with phototropins, involved in phototropism regulation by various blue light fluence; blue light attenuates phototropism in high fluence rates (100 µmol.m-2.s-1) but enhances phototropism in low fluence rates (<1.0 µmol.m-2.s-1) (PubMed:12857830). The effect of near-null magnetic field on flowering is altered by changes of blue light cycle and intensity in a CRY1/CRY2-dependent manner (PubMed:26095447). Involved in the strigolactone signaling that regulates hypocotyl growth in response to blue light (PubMed:24126495).1 Publication22 Publications
Confers resistance to turnip crinkle virus (TCV) by preventing COP1-mediated proteasome-mediated degradation of RPP8/HRT, thus promoting its stability in light. Exposure to darkness or blue-light induces degradation of CRY2, and in turn of RPP8/HRT, resulting in susceptibility to TCV.1 Publication

Cofactori

Protein has several cofactor binding sites:

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Binding sitei232 – 2321FADBy similarity
Metal bindingi235 – 2351Magnesium 1; via carbonyl oxygenBy similarity
Metal bindingi243 – 2431Magnesium 1By similarity
Sitei321 – 3211Involved in electron transfer from the protein surface to the FAD cofactor1 Publication
Metal bindingi355 – 3551Magnesium 1; via tele nitrogenBy similarity
Binding sitei356 – 3561FADBy similarity
Sitei374 – 3741Involved in electron transfer from the protein surface to the FAD cofactor1 Publication
Sitei397 – 3971Involved in electron transfer from the protein surface to the FAD cofactor1 Publication
Binding sitei406 – 4061ATPBy similarity

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Nucleotide bindingi244 – 2485FADBy similarity
Nucleotide bindingi356 – 3572ATPBy similarity
Nucleotide bindingi387 – 3893FADBy similarity

GO - Molecular functioni

  • ATP binding Source: UniProtKB
  • blue light photoreceptor activity Source: TAIR
  • FAD binding Source: UniProtKB
  • identical protein binding Source: IntAct
  • metal ion binding Source: UniProtKB-KW

GO - Biological processi

  • chromatin organization Source: TAIR
  • chromatin remodeling Source: TAIR
  • circadian regulation of calcium ion oscillation Source: TAIR
  • circadian rhythm Source: UniProtKB
  • defense response to virus Source: UniProtKB
  • flavin adenine dinucleotide metabolic process Source: UniProtKB
  • long-day photoperiodism, flowering Source: UniProtKB
  • phototropism Source: UniProtKB
  • positive regulation of flower development Source: TAIR
  • positive regulation of reactive oxygen species metabolic process Source: UniProtKB
  • protein-chromophore linkage Source: UniProtKB-KW
  • regulation of circadian rhythm Source: UniProtKB
  • regulation of flower development Source: TAIR
  • regulation of leaf morphogenesis Source: UniProtKB
  • regulation of meristem growth Source: TAIR
  • regulation of photoperiodism, flowering Source: UniProtKB
  • response to absence of light Source: UniProtKB
  • response to blue light Source: UniProtKB
  • response to light stimulus Source: UniProtKB
  • response to low fluence blue light stimulus by blue low-fluence system Source: UniProtKB
  • response to strigolactone Source: UniProtKB
  • response to water deprivation Source: TAIR
  • stomatal movement Source: TAIR
Complete GO annotation...

Keywords - Molecular functioni

Chromatin regulator, Photoreceptor protein, Receptor

Keywords - Biological processi

Plant defense, Sensory transduction

Keywords - Ligandi

ATP-binding, Chromophore, FAD, Flavoprotein, Magnesium, Metal-binding, Nucleotide-binding

Enzyme and pathway databases

BioCyciARA:GQT-395-MONOMER.
ARA:GQT-396-MONOMER.

Names & Taxonomyi

Protein namesi
Recommended name:
Cryptochrome-21 Publication
Short name:
Atcry21 Publication
Alternative name(s):
Blue light photoreceptor1 Publication
Protein PHR homolog 11 Publication
Short name:
AtPHH11 Publication
Protein SUPPRESSOR OF elf3 201 Publication
Gene namesi
Name:CRY21 Publication
Synonyms:PHH11 Publication, SEL201 Publication
Ordered Locus Names:At1g04400Imported
ORF Names:F19P19.14Imported
OrganismiArabidopsis thaliana (Mouse-ear cress)
Taxonomic identifieri3702 [NCBI]
Taxonomic lineageiEukaryotaViridiplantaeStreptophytaEmbryophytaTracheophytaSpermatophytaMagnoliophytaeudicotyledonsGunneridaePentapetalaerosidsmalvidsBrassicalesBrassicaceaeCamelineaeArabidopsis
Proteomesi
  • UP000006548 Componenti: Chromosome 1

Organism-specific databases

TAIRiAT1G04400.

Subcellular locationi

GO - Cellular componenti

  • cytoplasm Source: UniProtKB
  • nuclear body Source: UniProtKB
  • nucleus Source: UniProtKB
  • PML body Source: UniProtKB-SubCell
  • vacuole Source: TAIR
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Nucleus

Pathology & Biotechi

Biotechnological usei

The rapid blue light-mediated reversible interaction between CRY2 and BHLH63/CIB1 is used to design an optogenetic control of target proteins or organelles.5 Publications

Disruption phenotypei

Plants show increased root elongation in blue light (PubMed:16703358, PubMed:21511872). Reduced attenuating effect of high fluence rates of blue light in the cry1 cry2 double mutant. Slow rate of curvature at low fluence rates of blue light in cry1 cry2 (PubMed:12857830). The double mutant cry1 cry2 exhibits a reduced impact of near-null magnetic field on flowering in lower blue light intensity and short days (PubMed:26095447). Little detectable phenotype on circadian clock in blue light (BL). The double mutant cry1 cry2 is impaired in blue light signaling, resulting in long-period, lower-amplitude oscillations at 12 and 17 degrees Celsius and completely abolishing rhythms at 27 degrees Celsius (PubMed:23511208). Reduced hyponastic growth (differential growth-driven upward leaf movement) in low blue light fluence (PubMed:19558423). The double mutant cry1 cry2 is hyposensitive to the strigolactone analog GR24 (PubMed:24126495). The mutant cry2 exposed to a background of red light show severely impaired stomatal opening responses to blue light. The double mutant cry1 cry2 has reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday, associated with elevated abscisic acid levels (PubMed:22147516). Mutation sel20 suppresses the inhibitory effect of continuous light (LL) on the hypocotyl elongation of elf3-1. The double mutant elf3 sel20 exhibits a late-flowering phenotype (PubMed:21296763). Impaired chromatin decondensation during the floral transition and in low light conditions (PubMed:20935177). Increased sensitivity to turnip crinkle virus (TCV) and associated with reduced HRT levels and stability, and characterized by hypersensitive response (HR) symptoms (PubMed:20624951).11 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi321 – 3211W → A or F: Photochemically inactive in vitro. Undergo robust light-dependent photoreduction in an in vivo context via an alternative electron transport involving small molecule activators including ATP, NADH, and NADPH. 2 Publications
Mutagenesisi331 – 3311W → A: Decreased light sensitivity. Enhanced photoreduction in the presence of added ATP. 1 Publication
Mutagenesisi337 – 3371G → E: Loss of activity. 1 Publication
Mutagenesisi374 – 3741W → A: Photochemically inactive in vitro. Undergo robust light-dependent photoreduction in an in vivo context via an alternative electron transport involving small molecule activators including ATP, NADH, and NADPH. Enhanced photoreduction in the presence of added ATP. Constitutive interaction with SPA1 and BHLH63/CIB1. 2 Publications
Mutagenesisi374 – 3741W → F: Photochemically inactive in vitro. Undergo robust light-dependent photoreduction in an in vivo context via an alternative electron transport involving small molecule activators including ATP, NADH, and NADPH. Enhanced photoreduction in the presence of added ATP. 2 Publications
Mutagenesisi376 – 3761W → A: Decreased light sensitivity. Enhanced photoreduction in the presence of added ATP. 1 Publication
Mutagenesisi377 – 3771G → R: Constitutive light response. 1 Publication
Mutagenesisi387 – 3871D → A: Impaired FAD-binding leading to impaired blue light-mediated inhibition of hypocotyl elongation and loss of blue light-induced degradation. Disturbed BHLH63/CIB1 and SPA1 interactions. 2 Publications
Mutagenesisi397 – 3971W → A: Photochemically inactive in vitro. Undergo robust light-dependent photoreduction in an in vivo context via an alternative electron transport involving small molecule activators including ATP, NADH, and NADPH. 2 Publications
Mutagenesisi397 – 3971W → F: Photochemically inactive both in vitro and in vivo. 2 Publications
Mutagenesisi399 – 3991Y → A or F: Impaired ATP-mediated enhanced photoreduction and decreased affinity for ATP. 1 Publication
Mutagenesisi541 – 5411K → R: Impaired nuclear importation leading to reduced phosphorylation, physiological activities, and degradation in response to blue light. Forms protein bodies (photobodies) in both the nucleus and cytosol in response to blue light. 1 Publication
Mutagenesisi554 – 5552KK → RR: Impaired nuclear importation leading to reduced phosphorylation, physiological activities, and degradation in response to blue light. Forms protein bodies (photobodies) in both the nucleus and cytosol in response to blue light. 1 Publication
Mutagenesisi570 – 5756SSSSSS → AAAAAA: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with A-580, A-582, A-584, A-587, 598-A-A-599 and A-605. 1 Publication
Mutagenesisi570 – 5756SSSSSS → DDDDDD: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with D-580, D-582, D-584, D-587, 598-D-D-599 and D-605. 1 Publication
Mutagenesisi580 – 5801S → A: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-A--A-573, A-582, A-584, A-587, 598-A-A-599 and A-605. 1 Publication
Mutagenesisi580 – 5801S → D: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-D--D-573, D-582, D-584, D-587, 598-D-D-599 and D-605. 1 Publication
Mutagenesisi582 – 5821S → A: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-A--A-573, A-580, A-584, A-587, 598-A-A-599 and A-605. 1 Publication
Mutagenesisi582 – 5821S → D: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-D--D-573, D-580, D-584, D-587, 598-D-D-599 and D-605. 1 Publication
Mutagenesisi584 – 5841S → A: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-A--A-573, A-580, A-582, A-587, 598-A-A-599 and A-605. 1 Publication
Mutagenesisi584 – 5841S → D: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-D--D-573, D-580, D-582, D-587, 598-D-D-599 and D-605. 1 Publication
Mutagenesisi587 – 5871S → A: Impaired regulation of hypocotyl growth in blue light. Phosphorylated by CK1 proteins CK1.3 and CK1.4. Reduced phosphorylation by CK1 proteins CK1.3 and CK1.4; when associated with A-603. Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-A--A-573, A-580, A-582, A-584, 598-A-A-599 and A-605. 2 Publications
Mutagenesisi587 – 5871S → D: Constitutive regulation of hypocotyl growth in blue light. Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-D--D-573, D-580, D-582, D-584, 598-D-D-599 and D-605. 2 Publications
Mutagenesisi598 – 5992SS → AA: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-A--A-573, A-580, A-582, A-584, A-587 and A-605. 1 Publication
Mutagenesisi598 – 5992SS → DD: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-D--D-573, D-580, D-582, D-584, D-587 and D-605. 1 Publication
Mutagenesisi603 – 6031T → A: Impaired regulation of hypocotyl growth in blue light. Phosphorylated by CK1 proteins CK1.3 and CK1.4. Reduced phosphorylation by CK1 proteins CK1.3 and CK1.4; when associated with A-587. 1 Publication
Mutagenesisi603 – 6031T → D: Constitutive regulation of hypocotyl growth in blue light. 1 Publication
Mutagenesisi605 – 6051S → A: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-A--A-573, A-580, A-582, A-584, A-587 and 598-A-A-599. 1 Publication
Mutagenesisi605 – 6051S → D: Reduced blue light-mediated phosphorylation and impaired blue light-dependent proteolysis and hypocotyl inhibition response; when associated with 570-D--D-573, D-580, D-582, D-584, D-587 and 598-D-D-599. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 612612Cryptochrome-2PRO_0000085122Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei587 – 5871Phosphoserine; by CK11 Publication
Modified residuei598 – 5981Phosphoserine1 Publication
Modified residuei599 – 5991Phosphoserine1 Publication
Modified residuei603 – 6031Phosphothreonine; by CK11 Publication
Modified residuei605 – 6051Phosphoserine1 Publication

Post-translational modificationi

Phosphorylated by CK1.3 and CK1.4; in response to blue light. Required for degradation (PubMed:12066190, PubMed:17438275, PubMed:17965271, PubMed:9651577, PubMed:25792146, PubMed:23897926). Adopts an open conformation when phosphorylated upon photoexcitation and thus interacts with signaling partner proteins (PubMed:21841916). Not autophosphorylated, even in complex with FAD cofactor (PubMed:17073458).1 Publication7 Publications
Ubiquitinated; in response to blue light.2 Publications

Keywords - PTMi

Phosphoprotein, Ubl conjugation

Proteomic databases

PaxDbiQ96524.
PRIDEiQ96524.

PTM databases

iPTMnetiQ96524.

Expressioni

Tissue specificityi

Mostly expressed in the shoot meristems and root tips, and, to a lower extent, in the cotyledons, hypocotyls, and roots.1 Publication

Inductioni

Daily oscillation of protein abundance in plants grown in short days (SD) but not in long days (LD) (PubMed:12578985). Expression levels display circadian oscillations under constant conditions, with a low amplitude and a late phase, with maximal expression around the end of the light phase. Repressed by light (PubMed:11743105). In response to blue light and darkness, phosphorylated, ubiquitinated, and subsequently degraded (at protein level) in a SPA proteins-dependent manner (PubMed:20624951, PubMed:25792146, PubMed:22739826, PubMed:22311776). Transcripts levels oscillate weakly and proportionally to temperature, but protein levels are stable (PubMed:23511208). Accumulates in response to low blue light (LBL) and in low light (PubMed:26724867, PubMed:20935177).9 Publications

Gene expression databases

ExpressionAtlasiQ96524. baseline and differential.
GenevisibleiQ96524. AT.

Interactioni

Subunit structurei

Homodimer (PubMed:11089975, PubMed:11509693, PubMed:17438275). Interacts with COP1 and PHYB in the nucleus (PubMed:11089975, PubMed:11509693, PubMed:17438275, PubMed:20624951). Binds reversibly to CIBs proteins such as BHLH63/CIB1, BHLH78/CIB2, BHLH74/CIB4 and BHLH76/CIB5 after blue light illumination to stimulate their transcription factor activities (PubMed:18988809, PubMed:22139370, PubMed:24130508, PubMed:24780222). Interacts with PIF4 and PIF5 in the nucleus in response to low blue light (LBL) (PubMed:26724867). Binds to SPA1 in response to blue light, this interaction prevents SPA1/COP1 complex formation but stimulates interaction with COP1, and thus avoid COP1-dependent degradation of the transcription factors CO and HY5 by the proteasome and promotes hypocotyl elongation and floral initiation (PubMed:21514160, PubMed:22139370, PubMed:21511872, PubMed:22739826). Binding to ATP mediates conformational changes which facilitate flavin binding (PubMed:17073458).13 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
itself2EBI-531555,EBI-531555
COP1P432542EBI-531555,EBI-301649
PHYBP147133EBI-531555,EBI-300727

GO - Molecular functioni

  • identical protein binding Source: IntAct

Protein-protein interaction databases

BioGridi24764. 10 interactions.
DIPiDIP-33589N.
IntActiQ96524. 2 interactions.
MINTiMINT-207946.
STRINGi3702.AT1G04400.1.

Structurei

3D structure databases

ProteinModelPortaliQ96524.
SMRiQ96524. Positions 7-487.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini5 – 134130Photolyase/cryptochrome alpha/betaSequence analysisAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni1 – 485485CNT2, binds chromophores to sense blue light and mediate CRY dimerization1 PublicationAdd
BLAST
Regioni486 – 612127CCT2/CCE2, mediates blue light signaling1 Publication1 PublicationAdd
BLAST

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi541 – 55515Nuclear localization signalPROSITE-ProRule annotationAdd
BLAST

Compositional bias

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Compositional biasi22 – 276Poly-AlaSequence analysis
Compositional biasi546 – 5505Poly-GluSequence analysis
Compositional biasi566 – 58722Ser-richPROSITE-ProRule annotationAdd
BLAST

Domaini

The NC80 domain (486-565) contains a major active site responsible for the signal transduction processes regulating both hypocotyl inhibition and floral promotion. The C-terminal tail (564-612) is not required for physiological activity of the protein.

Sequence similaritiesi

Belongs to the DNA photolyase class-1 family.Curated
Contains 1 photolyase/cryptochrome alpha/beta domain.Sequence analysis

Phylogenomic databases

eggNOGiKOG0133. Eukaryota.
COG0415. LUCA.
InParanoidiQ96524.
KOiK12119.
OMAiWGERYFR.
PhylomeDBiQ96524.

Family and domain databases

Gene3Di3.40.50.620. 1 hit.
InterProiIPR005101. Cryptochr/Photolyase_FAD-bd.
IPR002081. Cryptochrome/DNA_photolyase_1.
IPR014134. Cryptochrome_pln.
IPR018394. DNA_photolyase_1_CS_C.
IPR006050. DNA_photolyase_N.
IPR014729. Rossmann-like_a/b/a_fold.
[Graphical view]
PfamiPF00875. DNA_photolyase. 1 hit.
PF03441. FAD_binding_7. 1 hit.
[Graphical view]
PRINTSiPR00147. DNAPHOTLYASE.
SUPFAMiSSF48173. SSF48173. 1 hit.
SSF52425. SSF52425. 1 hit.
TIGRFAMsiTIGR02766. crypt_chrom_pln. 1 hit.
PROSITEiPS00394. DNA_PHOTOLYASES_1_1. 1 hit.
PS00691. DNA_PHOTOLYASES_1_2. 1 hit.
PS51645. PHR_CRY_ALPHA_BETA. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Q96524-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MKMDKKTIVW FRRDLRIEDN PALAAAAHEG SVFPVFIWCP EEEGQFYPGR
60 70 80 90 100
ASRWWMKQSL AHLSQSLKAL GSDLTLIKTH NTISAILDCI RVTGATKVVF
110 120 130 140 150
NHLYDPVSLV RDHTVKEKLV ERGISVQSYN GDLLYEPWEI YCEKGKPFTS
160 170 180 190 200
FNSYWKKCLD MSIESVMLPP PWRLMPITAA AEAIWACSIE ELGLENEAEK
210 220 230 240 250
PSNALLTRAW SPGWSNADKL LNEFIEKQLI DYAKNSKKVV GNSTSLLSPY
260 270 280 290 300
LHFGEISVRH VFQCARMKQI IWARDKNSEG EESADLFLRG IGLREYSRYI
310 320 330 340 350
CFNFPFTHEQ SLLSHLRFFP WDADVDKFKA WRQGRTGYPL VDAGMRELWA
360 370 380 390 400
TGWMHNRIRV IVSSFAVKFL LLPWKWGMKY FWDTLLDADL ECDILGWQYI
410 420 430 440 450
SGSIPDGHEL DRLDNPALQG AKYDPEGEYI RQWLPELARL PTEWIHHPWD
460 470 480 490 500
APLTVLKASG VELGTNYAKP IVDIDTAREL LAKAISRTRE AQIMIGAAPD
510 520 530 540 550
EIVADSFEAL GANTIKEPGL CPSVSSNDQQ VPSAVRYNGS KRVKPEEEEE
560 570 580 590 600
RDMKKSRGFD ERELFSTAES SSSSSVFFVS QSCSLASEGK NLEGIQDSSD
610
QITTSLGKNG CK
Length:612
Mass (Da):69,457
Last modified:December 15, 1998 - v2
Checksum:i082E311301465904
GO

Sequence cautioni

The sequence AAT80593.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80594.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80595.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80596.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80597.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80598.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80599.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80600.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80601.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80602.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80603.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80604.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80605.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80606.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80607.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80608.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80609.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80610.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80611.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80612.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80613.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80614.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80615.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80616.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80617.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80618.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80619.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80620.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80621.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80622.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence AAT80623.1 differs from that shown. Reason: Erroneous initiation. Curated
The sequence BAD94467.1 differs from that shown. Reason: Erroneous initiation. Curated

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti78 – 781K → Q in AAB04996 (PubMed:9003312).Curated
Sequence conflicti78 – 781K → Q in AAB04997 (PubMed:9003312).Curated
Sequence conflicti95 – 951A → P in AAB04996 (PubMed:9003312).Curated
Sequence conflicti95 – 951A → P in AAB04997 (PubMed:9003312).Curated
Sequence conflicti188 – 1881S → L in AAL16379 (PubMed:11726930).Curated
Sequence conflicti366 – 3661A → G in AAB04996 (PubMed:9003312).Curated
Sequence conflicti534 – 5341A → V in AAB04996 (PubMed:9003312).Curated
Sequence conflicti534 – 5341A → V in AAB04997 (PubMed:9003312).Curated
Sequence conflicti590 – 5901K → E in CAA67508 (PubMed:9003312).Curated
Sequence conflicti612 – 6121K → Q in CAA67508 (PubMed:9003312).Curated

Natural variant

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Natural varianti83 – 831I → V in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti127 – 1271Q → S in strain: cv. Bu-0, cv. Da(1)-12, cv. Di-G, cv. Landsberg erecta, cv. Le-0, cv. Lip-0, cv. Mrk-0, cv. Stw-0 and cv. Ta-0. 1 Publication
Natural varianti326 – 3261D → E in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti367 – 3671V → M in strain: cv. Cvi-0. 1 Publication
Natural varianti476 – 4761T → I in strain: cv. Cvi-0. 1 Publication
Natural varianti482 – 4821A → G in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti498 – 4981A → S in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti507 – 5071F → L in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti511 – 5111G → E in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti543 – 5431V → L in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication
Natural varianti611 – 6111C → Y in strain: cv. Chi-1, cv. Co-1, cv. Kon, cv. PHW-1 and cv. Sha. 1 Publication

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
U62549 mRNA. Translation: AAB04996.1.
U62550 mRNA. Translation: AAB04997.1.
X99061 Genomic DNA. Translation: CAA67508.1.
U43397 mRNA. Translation: AAD09837.1.
AY057440 mRNA. Translation: AAL16377.1.
AY057441 Genomic DNA. Translation: AAL16378.1.
AY057442 Genomic DNA. Translation: AAL16379.1.
EU351967 Genomic DNA. Translation: ABY77601.1.
EU351968 Genomic DNA. Translation: ABY77602.1.
EU351969 Genomic DNA. Translation: ABY77603.1.
EU351970 Genomic DNA. Translation: ABY77604.1.
EU351971 Genomic DNA. Translation: ABY77605.1.
EU351972 Genomic DNA. Translation: ABY77606.1.
EU351973 Genomic DNA. Translation: ABY77607.1.
EU351974 Genomic DNA. Translation: ABY77608.1.
EU351975 Genomic DNA. Translation: ABY77609.1.
EU351976 Genomic DNA. Translation: ABY77610.1.
EU351977 Genomic DNA. Translation: ABY77611.1.
EU351978 Genomic DNA. Translation: ABY77612.1.
EU351979 Genomic DNA. Translation: ABY77613.1.
EU351980 Genomic DNA. Translation: ABY77614.1.
EU351981 Genomic DNA. Translation: ABY77615.1.
EU351982 Genomic DNA. Translation: ABY77616.1.
EU351983 Genomic DNA. Translation: ABY77617.1.
EU351984 Genomic DNA. Translation: ABY77618.1.
EU351985 Genomic DNA. Translation: ABY77619.1.
EU351986 Genomic DNA. Translation: ABY77620.1.
EU351987 Genomic DNA. Translation: ABY77621.1.
EU351988 Genomic DNA. Translation: ABY77622.1.
EU351989 Genomic DNA. Translation: ABY77623.1.
EU351990 Genomic DNA. Translation: ABY77624.1.
EU351991 Genomic DNA. Translation: ABY77625.1.
EU351993 Genomic DNA. Translation: ABY77627.1.
EU351992 Genomic DNA. Translation: ABY77626.1.
EU351994 Genomic DNA. Translation: ABY77628.1.
EU351995 Genomic DNA. Translation: ABY77629.1.
EU351996 Genomic DNA. Translation: ABY77630.1.
EU351997 Genomic DNA. Translation: ABY77631.1.
EU351998 Genomic DNA. Translation: ABY77632.1.
AC000104 Genomic DNA. Translation: AAB70435.1.
CP002684 Genomic DNA. Translation: AEE27692.1.
CP002684 Genomic DNA. Translation: AEE27693.1.
BT008576 mRNA. Translation: AAP40403.1.
BT008648 mRNA. Translation: AAP40463.1.
AY576241 Genomic DNA. Translation: AAT80593.1. Different initiation.
AY576242 Genomic DNA. Translation: AAT80594.1. Different initiation.
AY576243 Genomic DNA. Translation: AAT80595.1. Different initiation.
AY576244 Genomic DNA. Translation: AAT80596.1. Different initiation.
AY576245 Genomic DNA. Translation: AAT80597.1. Different initiation.
AY576246 Genomic DNA. Translation: AAT80598.1. Different initiation.
AY576247 Genomic DNA. Translation: AAT80599.1. Different initiation.
AY576248 Genomic DNA. Translation: AAT80600.1. Different initiation.
AY576249 Genomic DNA. Translation: AAT80601.1. Different initiation.
AY576250 Genomic DNA. Translation: AAT80602.1. Different initiation.
AY576251 Genomic DNA. Translation: AAT80603.1. Different initiation.
AY576252 Genomic DNA. Translation: AAT80604.1. Different initiation.
AY576253 Genomic DNA. Translation: AAT80605.1. Different initiation.
AY576254 Genomic DNA. Translation: AAT80606.1. Different initiation.
AY576255 Genomic DNA. Translation: AAT80607.1. Different initiation.
AY576256 Genomic DNA. Translation: AAT80608.1. Different initiation.
AY576257 Genomic DNA. Translation: AAT80609.1. Different initiation.
AY576258 Genomic DNA. Translation: AAT80610.1. Different initiation.
AY576259 Genomic DNA. Translation: AAT80611.1. Different initiation.
AY576260 Genomic DNA. Translation: AAT80612.1. Different initiation.
AY576261 Genomic DNA. Translation: AAT80613.1. Different initiation.
AY576262 Genomic DNA. Translation: AAT80614.1. Different initiation.
AY576263 Genomic DNA. Translation: AAT80615.1. Different initiation.
AY576264 Genomic DNA. Translation: AAT80616.1. Different initiation.
AY576265 Genomic DNA. Translation: AAT80617.1. Different initiation.
AY576266 Genomic DNA. Translation: AAT80618.1. Different initiation.
AY576267 Genomic DNA. Translation: AAT80619.1. Different initiation.
AY576268 Genomic DNA. Translation: AAT80620.1. Different initiation.
AY576269 Genomic DNA. Translation: AAT80621.1. Different initiation.
AY576270 Genomic DNA. Translation: AAT80622.1. Different initiation.
AY576271 Genomic DNA. Translation: AAT80623.1. Different initiation.
AK220946 mRNA. Translation: BAD94467.1. Different initiation.
PIRiA86176.
S71221.
RefSeqiNP_171935.1. NM_100320.3.
NP_849588.1. NM_179257.1.
UniGeneiAt.21976.

Genome annotation databases

EnsemblPlantsiAT1G04400.1; AT1G04400.1; AT1G04400.
AT1G04400.2; AT1G04400.2; AT1G04400.
GeneIDi839529.
GrameneiAT1G04400.1; AT1G04400.1; AT1G04400.
AT1G04400.2; AT1G04400.2; AT1G04400.
KEGGiath:AT1G04400.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
U62549 mRNA. Translation: AAB04996.1.
U62550 mRNA. Translation: AAB04997.1.
X99061 Genomic DNA. Translation: CAA67508.1.
U43397 mRNA. Translation: AAD09837.1.
AY057440 mRNA. Translation: AAL16377.1.
AY057441 Genomic DNA. Translation: AAL16378.1.
AY057442 Genomic DNA. Translation: AAL16379.1.
EU351967 Genomic DNA. Translation: ABY77601.1.
EU351968 Genomic DNA. Translation: ABY77602.1.
EU351969 Genomic DNA. Translation: ABY77603.1.
EU351970 Genomic DNA. Translation: ABY77604.1.
EU351971 Genomic DNA. Translation: ABY77605.1.
EU351972 Genomic DNA. Translation: ABY77606.1.
EU351973 Genomic DNA. Translation: ABY77607.1.
EU351974 Genomic DNA. Translation: ABY77608.1.
EU351975 Genomic DNA. Translation: ABY77609.1.
EU351976 Genomic DNA. Translation: ABY77610.1.
EU351977 Genomic DNA. Translation: ABY77611.1.
EU351978 Genomic DNA. Translation: ABY77612.1.
EU351979 Genomic DNA. Translation: ABY77613.1.
EU351980 Genomic DNA. Translation: ABY77614.1.
EU351981 Genomic DNA. Translation: ABY77615.1.
EU351982 Genomic DNA. Translation: ABY77616.1.
EU351983 Genomic DNA. Translation: ABY77617.1.
EU351984 Genomic DNA. Translation: ABY77618.1.
EU351985 Genomic DNA. Translation: ABY77619.1.
EU351986 Genomic DNA. Translation: ABY77620.1.
EU351987 Genomic DNA. Translation: ABY77621.1.
EU351988 Genomic DNA. Translation: ABY77622.1.
EU351989 Genomic DNA. Translation: ABY77623.1.
EU351990 Genomic DNA. Translation: ABY77624.1.
EU351991 Genomic DNA. Translation: ABY77625.1.
EU351993 Genomic DNA. Translation: ABY77627.1.
EU351992 Genomic DNA. Translation: ABY77626.1.
EU351994 Genomic DNA. Translation: ABY77628.1.
EU351995 Genomic DNA. Translation: ABY77629.1.
EU351996 Genomic DNA. Translation: ABY77630.1.
EU351997 Genomic DNA. Translation: ABY77631.1.
EU351998 Genomic DNA. Translation: ABY77632.1.
AC000104 Genomic DNA. Translation: AAB70435.1.
CP002684 Genomic DNA. Translation: AEE27692.1.
CP002684 Genomic DNA. Translation: AEE27693.1.
BT008576 mRNA. Translation: AAP40403.1.
BT008648 mRNA. Translation: AAP40463.1.
AY576241 Genomic DNA. Translation: AAT80593.1. Different initiation.
AY576242 Genomic DNA. Translation: AAT80594.1. Different initiation.
AY576243 Genomic DNA. Translation: AAT80595.1. Different initiation.
AY576244 Genomic DNA. Translation: AAT80596.1. Different initiation.
AY576245 Genomic DNA. Translation: AAT80597.1. Different initiation.
AY576246 Genomic DNA. Translation: AAT80598.1. Different initiation.
AY576247 Genomic DNA. Translation: AAT80599.1. Different initiation.
AY576248 Genomic DNA. Translation: AAT80600.1. Different initiation.
AY576249 Genomic DNA. Translation: AAT80601.1. Different initiation.
AY576250 Genomic DNA. Translation: AAT80602.1. Different initiation.
AY576251 Genomic DNA. Translation: AAT80603.1. Different initiation.
AY576252 Genomic DNA. Translation: AAT80604.1. Different initiation.
AY576253 Genomic DNA. Translation: AAT80605.1. Different initiation.
AY576254 Genomic DNA. Translation: AAT80606.1. Different initiation.
AY576255 Genomic DNA. Translation: AAT80607.1. Different initiation.
AY576256 Genomic DNA. Translation: AAT80608.1. Different initiation.
AY576257 Genomic DNA. Translation: AAT80609.1. Different initiation.
AY576258 Genomic DNA. Translation: AAT80610.1. Different initiation.
AY576259 Genomic DNA. Translation: AAT80611.1. Different initiation.
AY576260 Genomic DNA. Translation: AAT80612.1. Different initiation.
AY576261 Genomic DNA. Translation: AAT80613.1. Different initiation.
AY576262 Genomic DNA. Translation: AAT80614.1. Different initiation.
AY576263 Genomic DNA. Translation: AAT80615.1. Different initiation.
AY576264 Genomic DNA. Translation: AAT80616.1. Different initiation.
AY576265 Genomic DNA. Translation: AAT80617.1. Different initiation.
AY576266 Genomic DNA. Translation: AAT80618.1. Different initiation.
AY576267 Genomic DNA. Translation: AAT80619.1. Different initiation.
AY576268 Genomic DNA. Translation: AAT80620.1. Different initiation.
AY576269 Genomic DNA. Translation: AAT80621.1. Different initiation.
AY576270 Genomic DNA. Translation: AAT80622.1. Different initiation.
AY576271 Genomic DNA. Translation: AAT80623.1. Different initiation.
AK220946 mRNA. Translation: BAD94467.1. Different initiation.
PIRiA86176.
S71221.
RefSeqiNP_171935.1. NM_100320.3.
NP_849588.1. NM_179257.1.
UniGeneiAt.21976.

3D structure databases

ProteinModelPortaliQ96524.
SMRiQ96524. Positions 7-487.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi24764. 10 interactions.
DIPiDIP-33589N.
IntActiQ96524. 2 interactions.
MINTiMINT-207946.
STRINGi3702.AT1G04400.1.

PTM databases

iPTMnetiQ96524.

Proteomic databases

PaxDbiQ96524.
PRIDEiQ96524.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblPlantsiAT1G04400.1; AT1G04400.1; AT1G04400.
AT1G04400.2; AT1G04400.2; AT1G04400.
GeneIDi839529.
GrameneiAT1G04400.1; AT1G04400.1; AT1G04400.
AT1G04400.2; AT1G04400.2; AT1G04400.
KEGGiath:AT1G04400.

Organism-specific databases

TAIRiAT1G04400.

Phylogenomic databases

eggNOGiKOG0133. Eukaryota.
COG0415. LUCA.
InParanoidiQ96524.
KOiK12119.
OMAiWGERYFR.
PhylomeDBiQ96524.

Enzyme and pathway databases

BioCyciARA:GQT-395-MONOMER.
ARA:GQT-396-MONOMER.

Miscellaneous databases

PROiQ96524.

Gene expression databases

ExpressionAtlasiQ96524. baseline and differential.
GenevisibleiQ96524. AT.

Family and domain databases

Gene3Di3.40.50.620. 1 hit.
InterProiIPR005101. Cryptochr/Photolyase_FAD-bd.
IPR002081. Cryptochrome/DNA_photolyase_1.
IPR014134. Cryptochrome_pln.
IPR018394. DNA_photolyase_1_CS_C.
IPR006050. DNA_photolyase_N.
IPR014729. Rossmann-like_a/b/a_fold.
[Graphical view]
PfamiPF00875. DNA_photolyase. 1 hit.
PF03441. FAD_binding_7. 1 hit.
[Graphical view]
PRINTSiPR00147. DNAPHOTLYASE.
SUPFAMiSSF48173. SSF48173. 1 hit.
SSF52425. SSF52425. 1 hit.
TIGRFAMsiTIGR02766. crypt_chrom_pln. 1 hit.
PROSITEiPS00394. DNA_PHOTOLYASES_1_1. 1 hit.
PS00691. DNA_PHOTOLYASES_1_2. 1 hit.
PS51645. PHR_CRY_ALPHA_BETA. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases."
    Hoffman P.D., Batschauer A., Hays J.B.
    Mol. Gen. Genet. 253:259-265(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA / MRNA].
    Strain: cv. Columbia.
  2. "CRY2: a second member of the Arabidopsis cryptochrome gene family."
    Lin C., Ahmad M., Chan J., Cashmore A.R.
    Plant Gene Register PGR96-001
    Cited for: NUCLEOTIDE SEQUENCE [MRNA].
    Strain: cv. Columbia.
  3. "A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2."
    El-Din El-Assal S., Alonso-Blanco C., Peeters A.J.M., Raz V., Koornneef M.
    Nat. Genet. 29:435-440(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA / MRNA].
    Strain: cv. Cvi-0 and cv. Landsberg erecta.
  4. "Local patterns of nucleotide polymorphism are highly variable in the selfing species Arabidopsis thaliana."
    Moore R.C., Stevens M.H.H.
    J. Mol. Evol. 66:116-129(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA], VARIANTS.
    Strain: cv. Bla-10, cv. Bsch-0, cv. Bu-0, cv. Bu-2, cv. Chi-1, cv. Co-1, cv. Columbia, cv. Cvi-0, cv. Da(1)-12, cv. Di-G, cv. El-0, cv. Fe-1, cv. Gr-3, cv. Hn-0, cv. Kon, cv. Kr-0, cv. Landsberg erecta, cv. Le-0, cv. Li-3, cv. Lip-0, cv. Lz-0, cv. Mrk-0, cv. Mt-0, cv. Mz-0, cv. Ove-0, cv. PHW-1, cv. PHW-32, cv. PHW-36, cv. Sha, cv. Stw-0, cv. Ta-0 and cv. Wassilewskija-3.
  5. "Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana."
    Theologis A., Ecker J.R., Palm C.J., Federspiel N.A., Kaul S., White O., Alonso J., Altafi H., Araujo R., Bowman C.L., Brooks S.Y., Buehler E., Chan A., Chao Q., Chen H., Cheuk R.F., Chin C.W., Chung M.K.
    , Conn L., Conway A.B., Conway A.R., Creasy T.H., Dewar K., Dunn P., Etgu P., Feldblyum T.V., Feng J.-D., Fong B., Fujii C.Y., Gill J.E., Goldsmith A.D., Haas B., Hansen N.F., Hughes B., Huizar L., Hunter J.L., Jenkins J., Johnson-Hopson C., Khan S., Khaykin E., Kim C.J., Koo H.L., Kremenetskaia I., Kurtz D.B., Kwan A., Lam B., Langin-Hooper S., Lee A., Lee J.M., Lenz C.A., Li J.H., Li Y.-P., Lin X., Liu S.X., Liu Z.A., Luros J.S., Maiti R., Marziali A., Militscher J., Miranda M., Nguyen M., Nierman W.C., Osborne B.I., Pai G., Peterson J., Pham P.K., Rizzo M., Rooney T., Rowley D., Sakano H., Salzberg S.L., Schwartz J.R., Shinn P., Southwick A.M., Sun H., Tallon L.J., Tambunga G., Toriumi M.J., Town C.D., Utterback T., Van Aken S., Vaysberg M., Vysotskaia V.S., Walker M., Wu D., Yu G., Fraser C.M., Venter J.C., Davis R.W.
    Nature 408:816-820(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: cv. Columbia.
  6. The Arabidopsis Information Resource (TAIR)
    Submitted (APR-2011) to the EMBL/GenBank/DDBJ databases
    Cited for: GENOME REANNOTATION.
    Strain: cv. Columbia.
  7. "Empirical analysis of transcriptional activity in the Arabidopsis genome."
    Yamada K., Lim J., Dale J.M., Chen H., Shinn P., Palm C.J., Southwick A.M., Wu H.C., Kim C.J., Nguyen M., Pham P.K., Cheuk R.F., Karlin-Newmann G., Liu S.X., Lam B., Sakano H., Wu T., Yu G.
    , Miranda M., Quach H.L., Tripp M., Chang C.H., Lee J.M., Toriumi M.J., Chan M.M., Tang C.C., Onodera C.S., Deng J.M., Akiyama K., Ansari Y., Arakawa T., Banh J., Banno F., Bowser L., Brooks S.Y., Carninci P., Chao Q., Choy N., Enju A., Goldsmith A.D., Gurjal M., Hansen N.F., Hayashizaki Y., Johnson-Hopson C., Hsuan V.W., Iida K., Karnes M., Khan S., Koesema E., Ishida J., Jiang P.X., Jones T., Kawai J., Kamiya A., Meyers C., Nakajima M., Narusaka M., Seki M., Sakurai T., Satou M., Tamse R., Vaysberg M., Wallender E.K., Wong C., Yamamura Y., Yuan S., Shinozaki K., Davis R.W., Theologis A., Ecker J.R.
    Science 302:842-846(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: cv. Columbia.
  8. "Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles."
    Olsen K.M., Halldorsdottir S.S., Stinchcombe J.R., Weinig C., Schmitt J., Purugganan M.D.
    Genetics 167:1361-1369(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 2-612.
    Strain: cv. Bla-10, cv. Bsch-0, cv. Bu-0, cv. Bu-2, cv. Chi-1, cv. Co-1, cv. Cvi-0, cv. Da(1)-12, cv. Di-G, cv. El-0, cv. Fe-1, cv. Gr-3, cv. Hn-0, cv. Kon, cv. Kr-0, cv. Landsberg erecta, cv. Le-0, cv. Li-3, cv. Lip-0, cv. Lz-0, cv. Mrk-0, cv. Mt-0, cv. Mz-0, cv. Ove-0, cv. Oy-1, cv. PHW-1, cv. PHW-33, cv. PHW-36, cv. Sha, cv. Stw-0 and cv. Ta-0.
  9. "Large-scale analysis of RIKEN Arabidopsis full-length (RAFL) cDNAs."
    Totoki Y., Seki M., Ishida J., Nakajima M., Enju A., Kamiya A., Narusaka M., Shin-i T., Nakagawa M., Sakamoto N., Oishi K., Kohara Y., Kobayashi M., Toyoda A., Sakaki Y., Sakurai T., Iida K., Akiyama K.
    , Satou M., Toyoda T., Konagaya A., Carninci P., Kawai J., Hayashizaki Y., Shinozaki K.
    Submitted (MAR-2005) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 485-612.
    Strain: cv. Columbia.
  10. "Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism."
    Ahmad M., Jarillo J.A., Smirnova O., Cashmore A.R.
    Nature 392:720-723(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, MUTAGENESIS OF GLY-337.
  11. "The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro."
    Ahmad M., Jarillo J.A., Smirnova O., Cashmore A.R.
    Mol. Cell 1:939-948(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION.
  12. "Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2."
    Lin C., Yang H., Guo H., Mockler T., Chen J., Cashmore A.R.
    Proc. Natl. Acad. Sci. U.S.A. 95:2686-2690(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  13. "Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2."
    Kleiner O., Kircher S., Harter K., Batschauer A.
    Plant J. 19:289-296(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
  14. "The C termini of Arabidopsis cryptochromes mediate a constitutive light response."
    Yang H.-Q., Wu Y.-J., Tang R.-H., Liu D., Liu Y., Cashmore A.R.
    Cell 103:815-827(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: DOMAINS.
  15. "Functional interaction of phytochrome B and cryptochrome 2."
    Mas P., Devlin P.F., Panda S., Kay S.A.
    Nature 408:207-211(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PHYB.
  16. "Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis."
    Toth R., Kevei E., Hall A., Millar A.J., Nagy F., Kozma-Bognar L.
    Plant Physiol. 127:1607-1616(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION BY CIRCADIAN CLOCK AND LIGHT, TISSUE SPECIFICITY.
  17. "Direct interaction of Arabidopsis cryptochromes with COP1 in light control development."
    Wang H., Ma L.-G., Li J.-M., Zhao H.-Y., Deng X.W.
    Science 294:154-158(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH COP1.
  18. "Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation."
    Shalitin D., Yang H., Mockler T.C., Maymon M., Guo H., Whitelam G.C., Lin C.
    Nature 417:763-767(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION.
  19. "Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes."
    Whippo C.W., Hangarter R.P.
    Plant Physiol. 132:1499-1507(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  20. Cited for: FUNCTION.
  21. "Regulation of photoperiodic flowering by Arabidopsis photoreceptors."
    Mockler T., Yang H., Yu X., Parikh D., Cheng Y.C., Dolan S., Lin C.
    Proc. Natl. Acad. Sci. U.S.A. 100:2140-2145(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION.
  22. "A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening."
    Mao J., Zhang Y.C., Sang Y., Li Q.H., Yang H.Q.
    Proc. Natl. Acad. Sci. U.S.A. 102:12270-12275(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  23. "Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes."
    Ozguer S., Sancar A.
    Biochemistry 45:13369-13374(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: PTM, COFACTOR, ATP-BINDING.
  24. "Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana."
    Canamero R.C., Bakrim N., Bouly J.-P., Garay A., Dudkin E.E., Habricot Y., Ahmad M.
    Planta 224:995-1003(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  25. "The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone."
    Banerjee R., Schleicher E., Meier S., Viana R.M., Pokorny R., Ahmad M., Bittl R., Batschauer A.
    J. Biol. Chem. 282:14916-14922(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: COFACTOR.
  26. "Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis."
    Tessadori F., Schulkes R.K., van Driel R., Fransz P.
    Plant J. 50:848-857(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  27. "Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2."
    Yu X., Shalitin D., Liu X., Maymon M., Klejnot J., Yang H., Lopez J., Zhao X., Bendehakkalu K.T., Lin C.
    Proc. Natl. Acad. Sci. U.S.A. 104:7289-7294(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, SUBUNIT, PHOSPHORYLATION.
  28. "Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus."
    Yu X., Klejnot J., Zhao X., Shalitin D., Maymon M., Yang H., Lee J., Liu X., Lopez J., Lin C.
    Plant Cell 19:3146-3156(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, UBIQUITINATION, PHOSPHORYLATION.
  29. "CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis."
    Endo M., Mochizuki N., Suzuki T., Nagatani A.
    Plant Cell 19:84-93(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  30. "Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis."
    Liu H., Yu X., Li K., Klejnot J., Yang H., Lisiero D., Lin C.
    Science 322:1535-1539(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH BHLH63/CIB1, SUBCELLULAR LOCATION, MUTAGENESIS OF ASP-387.
  31. "Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation."
    Millenaar F.F., van Zanten M., Cox M.C., Pierik R., Voesenek L.A., Peeters A.J.
    New Phytol. 184:141-152(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  32. Cited for: REVIEW ON CRYPTOCHROMES.
  33. Cited for: REVIEW ON PHOTORECEPTORS.
  34. "Rapid blue-light-mediated induction of protein interactions in living cells."
    Kennedy M.J., Hughes R.M., Peteya L.A., Schwartz J.W., Ehlers M.D., Tucker C.L.
    Nat. Methods 7:973-975(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: BIOTECHNOLOGY.
  35. "Photoreceptors CRYTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis."
    van Zanten M., Tessadori F., McLoughlin F., Smith R., Millenaar F.F., van Driel R., Voesenek L.A.C.J., Peeters A.J.M., Fransz P.
    Plant Physiol. 154:1686-1696(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INDUCTION BY LOW LIGHT.
    Strain: cv. Columbia and cv. Landsberg erecta.
  36. "Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase."
    Jeong R.-D., Chandra-Shekara A.C., Barman S.R., Navarre D., Klessig D.F., Kachroo A., Kachroo P.
    Proc. Natl. Acad. Sci. U.S.A. 107:13538-13543(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, REGULATION BY BLUE-LIGHT AND DARKNESS, INTERACTION WITH COP1, SUBCELLULAR LOCATION.
  37. "Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis."
    Zuo Z., Liu H., Liu B., Liu X., Lin C.
    Curr. Biol. 21:841-847(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH SPA1, MUTAGENESIS OF ASP-387.
  38. "Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism."
    Lian H.-L., He S.-B., Zhang Y.-C., Zhu D.-M., Zhang J.-Y., Jia K.-P., Sun S.-X., Li L., Yang H.-Q.
    Genes Dev. 25:1023-1028(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, SUBCELLULAR LOCATION, INTERACTION WITH SPA1.
    Strain: cv. Columbia.
  39. "Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light."
    Nefissi R., Natsui Y., Miyata K., Oda A., Hase Y., Nakagawa M., Ghorbel A., Mizoguchi T.
    J. Exp. Bot. 62:2731-2744(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  40. "Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction."
    Li X., Wang Q., Yu X., Liu H., Yang H., Zhao C., Liu X., Tan C., Klejnot J., Zhong D., Lin C.
    Proc. Natl. Acad. Sci. U.S.A. 108:20844-20849(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF TRP-321; TRP-374 AND TRP-397, INTERACTION WITH SPA1 AND BHLH63/CIB1.
    Strain: cv. Columbia.
  41. "Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response."
    Gu N.-N., Zhang Y.-C., Yang H.-Q.
    Mol. Plant 5:85-97(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF GLY-377.
  42. "A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2."
    Zuo Z.-C., Meng Y.-Y., Yu X.-H., Zhang Z.-L., Feng D.-S., Sun S.-F., Liu B., Lin C.-T.
    Mol. Plant 5:726-733(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, REGULATION BY BLUE LIGHT, MUTAGENESIS OF LYS-541 AND 554-LYS-LYS-555.
    Strain: cv. Columbia.
  43. "Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A."
    Weidler G., Zur Oven-Krockhaus S., Heunemann M., Orth C., Schleifenbaum F., Harter K., Hoecker U., Batschauer A.
    Plant Cell 24:2610-2623(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH SPA1, SUBCELLULAR LOCATION.
  44. "Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight."
    Boccalandro H.E., Giordano C.V., Ploschuk E.L., Piccoli P.N., Bottini R., Casal J.J.
    Plant Physiol. 158:1475-1484(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  45. Cited for: BIOTECHNOLOGY.
  46. "Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch."
    Ozkan-Dagliyan I., Chiou Y.-Y., Ye R., Hassan B.H., Ozturk N., Sancar A.
    J. Biol. Chem. 288:23244-23251(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, BIOTECHNOLOGY.
  47. "Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures."
    Gould P.D., Ugarte N., Domijan M., Costa M., Foreman J., Macgregor D., Rose K., Griffiths J., Millar A.J., Finkenstaedt B., Penfield S., Rand D.A., Halliday K.J., Hall A.J.W.
    Mol. Syst. Biol. 9:650-650(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INDUCTION BY TEMPERATURE.
    Strain: cv. Columbia.
  48. "Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling."
    Tan S.-T., Dai C., Liu H.-T., Xue H.-W.
    Plant Cell 25:2618-2632(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-587 AND THR-603 BY CK1.3 AND CK1.4, MUTAGENESIS OF SER-587 AND THR-603.
  49. "Lifetimes of Arabidopsis cryptochrome signaling states in vivo."
    Herbel V., Orth C., Wenzel R., Ahmad M., Bittl R., Batschauer A.
    Plant J. 74:583-592(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
    Strain: cv. Landsberg erecta.
  50. "Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis."
    Liu Y., Li X., Li K., Liu H., Lin C.
    PLoS Genet. 9:E1003861-E1003861(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INTERACTION WITH BHLH63/CIB1; BHLH78/CIB2; BHLH74/CIB4 AND BHLH76/CIB5.
    Strain: cv. Columbia.
  51. "Quantitative real-time kinetics of optogenetic proteins CRY2 and CIB1/N using single-molecule tools."
    Cui Y., Choudhury S.R., Irudayaraj J.
    Anal. Biochem. 458:58-60(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH BHLH63/CIB1.
  52. "Manipulation of plasma membrane phosphoinositides using photoinduced protein-protein interactions."
    Idevall-Hagren O., Decamilli P.
    Methods Mol. Biol. 1148:109-128(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: BIOTECHNOLOGY.
  53. "Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis."
    Jia K.-P., Luo Q., He S.-B., Lu X.-D., Yang H.-Q.
    Mol. Plant 7:528-540(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  54. "Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways."
    Engelhard C., Wang X., Robles D., Moldt J., Essen L.-O., Batschauer A., Bittl R., Ahmad M.
    Plant Cell 26:4519-4531(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, COFACTOR, MUTAGENESIS OF TRP-321; TRP-331; TRP-374; TRP-376; TRP-397 AND TYR-399.
  55. "Suppression of Arabidopsis flowering by near-null magnetic field is affected by light."
    Xu C., Li Y., Yu Y., Zhang Y., Wei S.
    Bioelectromagnetics 36:476-479(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  56. "Optogenetic control of molecular motors and organelle distributions in cells."
    Duan L., Che D., Zhang K., Ong Q., Guo S., Cui B.
    Chem. Biol. 22:671-682(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: BIOTECHNOLOGY.
  57. "The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2."
    Wang Q., Barshop W.D., Bian M., Vashisht A.A., He R., Yu X., Liu B., Nguyen P., Liu X., Zhao X., Wohlschlegel J.A., Lin C.
    Mol. Plant 8:631-643(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, PHOSPHORYLATION AT SER-598; SER-599 AND SER-605, MUTAGENESIS OF 570-SER--SER-575; SER-580; SER-582; SER-584; SER-587; 598-SER-SER-599 AND SER-605, IDENTIFICATION BY MASS SPECTROMETRY, UBIQUITINATION, REGULATION BY BLUE LIGHT.
  58. "The CNT1 domain of Arabidopsis CRY1 Alone is sufficient to mediate blue light inhibition of hypocotyl elongation."
    He S.B., Wang W.X., Zhang J.Y., Xu F., Lian H.L., Li L., Yang H.Q.
    Mol. Plant 8:822-825(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: DOMAINS.
  59. "Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role."
    Jourdan N., Martino C.F., El-Esawi M., Witczak J., Bouchet P.-E., d'Harlingue A., Ahmad M.
    Plant Signal. Behav. 10:E1042647-E1042647(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION, FUNCTION.
  60. "Cryptochromes interact directly with PIFs to control plant growth in limiting blue light."
    Pedmale U.V., Huang S.S., Zander M., Cole B.J., Hetzel J., Ljung K., Reis P.A., Sridevi P., Nito K., Nery J.R., Ecker J.R., Chory J.
    Cell 164:233-245(2016) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INDUCTION BY LOW BLUE LIGHT, INTERACTION WITH PIF4 AND PIF5, SUBCELLULAR LOCATION.

Entry informationi

Entry nameiCRY2_ARATH
AccessioniPrimary (citable) accession number: Q96524
Secondary accession number(s): B0LQ23
, B0LQ24, B0LQ25, B0LQ29, Q42549, Q42603, Q42604, Q56ZL8, Q696X6, Q696X8, Q696Z7, Q697A2, Q8VWL9, Q8VZY9
Entry historyi
Integrated into UniProtKB/Swiss-Prot: December 15, 1998
Last sequence update: December 15, 1998
Last modified: June 8, 2016
This is version 141 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programPlant Protein Annotation Program

Miscellaneousi

Miscellaneous

Phosphorylation of the C-terminal tail and resulting derepression of NC80 domain may both depend on homodimerization.

Caution

Was originally thought to be a DNA photolyase.1 Publication

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. Arabidopsis thaliana
    Arabidopsis thaliana: entries and gene names
  2. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.