Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Regulatory-associated protein of mTOR

Gene

RPTOR

Organism
Homo sapiens (Human)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Involved in the control of the mammalian target of rapamycin complex 1 (mTORC1) activity which regulates cell growth and survival, and autophagy in response to nutrient and hormonal signals; functions as a scaffold for recruiting mTORC1 substrates. mTORC1 is activated in response to growth factors or amino acids. Growth factor-stimulated mTORC1 activation involves a AKT1-mediated phosphorylation of TSC1-TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Amino acid-signaling to mTORC1 requires its relocalization to the lysosomes mediated by the Ragulator complex and the Rag GTPases. Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. mTORC1 phosphorylates EIF4EBP1 and releases it from inhibiting the elongation initiation factor 4E (eiF4E). mTORC1 phosphorylates and activates S6K1 at 'Thr-389', which then promotes protein synthesis by phosphorylating PDCD4 and targeting it for degradation. Involved in ciliogenesis.3 Publications

GO - Molecular functioni

  • 14-3-3 protein binding Source: UniProtKB
  • protein complex binding Source: UniProtKB
  • protein kinase binding Source: UniProtKB
  • RNA polymerase III type 1 promoter DNA binding Source: UniProtKB
  • RNA polymerase III type 2 promoter DNA binding Source: UniProtKB
  • RNA polymerase III type 3 promoter DNA binding Source: UniProtKB
  • TFIIIC-class transcription factor binding Source: UniProtKB

GO - Biological processi

  • cell cycle arrest Source: Reactome
  • cell growth Source: UniProtKB
  • cellular response to amino acid stimulus Source: UniProtKB
  • cellular response to heat Source: Reactome
  • cellular response to nutrient levels Source: UniProtKB
  • gene expression Source: Reactome
  • insulin receptor signaling pathway Source: Reactome
  • positive regulation of endothelial cell proliferation Source: Ensembl
  • positive regulation of protein serine/threonine kinase activity Source: UniProtKB
  • positive regulation of TOR signaling Source: UniProtKB
  • positive regulation of transcription from RNA polymerase III promoter Source: UniProtKB
  • regulation of cell size Source: UniProtKB
  • regulation of cellular response to heat Source: Reactome
  • TOR signaling Source: UniProtKB
  • transcription initiation from RNA polymerase II promoter Source: Reactome
Complete GO annotation...

Enzyme and pathway databases

ReactomeiREACT_21285. Regulation of AMPK activity via LKB1.
REACT_21393. Regulation of Rheb GTPase activity by AMPK.
REACT_264164. HSF1-dependent transactivation.
REACT_355377. TP53 Regulates Metabolic Genes.
REACT_6754. S6K1-mediated signalling.
REACT_6836. Release of eIF4E.
REACT_6838. mTOR signalling.
SignaLinkiQ8N122.

Names & Taxonomyi

Protein namesi
Recommended name:
Regulatory-associated protein of mTOR
Short name:
Raptor
Alternative name(s):
p150 target of rapamycin (TOR)-scaffold protein
Gene namesi
Name:RPTOR
Synonyms:KIAA1303, RAPTOR
OrganismiHomo sapiens (Human)
Taxonomic identifieri9606 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo
ProteomesiUP000005640 Componenti: Chromosome 17

Organism-specific databases

HGNCiHGNC:30287. RPTOR.

Subcellular locationi

  • Cytoplasm
  • Lysosome
  • Cytoplasmic granule

  • Note: Targeting to lysosomes depends on amino acid availability. In arsenite-stressed cells, accumulates in stress granules when associated with SPAG5 and association with lysosomes is drastically decreased.

GO - Cellular componenti

  • cytoplasm Source: UniProtKB
  • cytosol Source: Reactome
  • dendrite Source: Ensembl
  • intracellular membrane-bounded organelle Source: HPA
  • lysosomal membrane Source: UniProtKB
  • lysosome Source: UniProtKB
  • neuronal cell body Source: Ensembl
  • nucleoplasm Source: HPA
  • TORC1 complex Source: UniProtKB
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Lysosome

Pathology & Biotechi

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi722 – 7221S → A: Abolishes AMPK-mediated phosphorylation; when associated with A-792. 1 Publication
Mutagenesisi792 – 7921S → A: Abolishes AMPK-mediated phosphorylation; when associated with A-722. 1 Publication

Organism-specific databases

PharmGKBiPA165432629.

Polymorphism and mutation databases

BioMutaiRPTOR.
DMDMi46577501.

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 13351335Regulatory-associated protein of mTORPRO_0000051200Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei696 – 6961Phosphoserine; by MAPK82 Publications
Modified residuei706 – 7061Phosphothreonine; by MAPK82 Publications
Modified residuei719 – 7191Phosphoserine; by RPS6KA12 Publications
Modified residuei721 – 7211Phosphoserine; by RPS6KA11 Publication
Modified residuei722 – 7221Phosphoserine; by AMPK and RPS6KA12 Publications
Modified residuei738 – 7381Phosphoserine1 Publication
Modified residuei792 – 7921Phosphoserine; by AMPK1 Publication
Modified residuei855 – 8551Phosphoserine1 Publication
Modified residuei859 – 8591Phosphoserine; by MTOR4 Publications
Modified residuei863 – 8631Phosphoserine; by MAPK8 and MTOR7 Publications
Modified residuei877 – 8771Phosphoserine8 Publications

Post-translational modificationi

Insulin-stimulated phosphorylation at Ser-863 by MTOR and MAPK8 up-regulates mTORC1 activity. Osmotic stress also induces phosphorylation at Ser-696, Thr-706 and Ser-863 by MAPK8. Ser-863 phosphorylation is required for phosphorylation at Ser-855 and Ser-859. In response to nutrient limitation, phosphorylated by AMPK; phosphorylation promotes interaction with 14-3-3 proteins, leading to negative regulation of the mTORC1 complex. In response to growth factors, phosphorylated at Ser-719, Ser-721 and Ser-722 by RPS6KA1, which stimulates mTORC1 activity.4 Publications

Keywords - PTMi

Phosphoprotein

Proteomic databases

MaxQBiQ8N122.
PaxDbiQ8N122.
PRIDEiQ8N122.

PTM databases

PhosphoSiteiQ8N122.

Expressioni

Tissue specificityi

Highly expressed in skeletal muscle, and in a lesser extent in brain, lung, small intestine, kidney and placenta. Isoform 3 is widely expressed, with highest levels in nasal mucosa and pituitary and lowest in spleen.2 Publications

Gene expression databases

BgeeiQ8N122.
ExpressionAtlasiQ8N122. baseline and differential.
GenevisibleiQ8N122. HS.

Organism-specific databases

HPAiCAB013514.
HPA029821.
HPA064306.

Interactioni

Subunit structurei

Part of the mammalian target of rapamycin complex 1 (mTORC1) which contains MTOR, MLST8, RPTOR, AKT1S1/PRAS40 and DEPTOR. mTORC1 binds to and is inhibited by FKBP12-rapamycin. Binds directly to 4EBP1 and RPS6KB1 independently of its association with MTOR. Binds preferentially to poorly or non-phosphorylated forms of EIF4EBP1, and this binding is critical to the ability of MTOR to catalyze phosphorylation. Forms a complex with MTOR under both leucine-rich and -poor conditions. Interacts with ULK1 in a nutrient-dependent manner; the interaction is reduced during starvation. Interacts (when phosphorylated by AMPK) with 14-3-3 protein, leading to inhibit its activity. Interacts with SPAG5; SPAG5 competes with MTOR for RPTOR-binding, resulting in decreased mTORC1 formation. Interacts with G3BP1. The complex formed with G3BP1 AND SPAG5 is increased by oxidative stress. Interacts with HTR6 (PubMed:23027611). Interacts with PIH1D1 (PubMed:24036451).10 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
EIF4EBP1Q135415EBI-1567928,EBI-74090
G3BP1Q132834EBI-1567928,EBI-1047359
LARSQ9P2J53EBI-1567928,EBI-356077
MLST8Q9BVC43EBI-1567928,EBI-1387471
MTORP4234532EBI-1567928,EBI-359260
MtorQ9JLN95EBI-1567928,EBI-1571628From a different organism.
PREX1Q8TCU62EBI-1567928,EBI-1046542
RAB1AP628204EBI-1567928,EBI-716845
Rps6kb1P679992EBI-1567928,EBI-2639458From a different organism.
RRAGCQ9HB905EBI-1567928,EBI-752390
SIRT1Q96EB63EBI-1567928,EBI-1802965
SPAG5Q96R069EBI-1567928,EBI-413317

Protein-protein interaction databases

BioGridi121582. 74 interactions.
DIPiDIP-39482N.
IntActiQ8N122. 31 interactions.
MINTiMINT-3038940.
STRINGi9606.ENSP00000307272.

Structurei

3D structure databases

ProteinModelPortaliQ8N122.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Repeati1020 – 106142WD 1Add
BLAST
Repeati1065 – 110642WD 2Add
BLAST
Repeati1121 – 116040WD 3Add
BLAST
Repeati1164 – 120340WD 4Add
BLAST
Repeati1209 – 124941WD 5Add
BLAST
Repeati1251 – 129141WD 6Add
BLAST
Repeati1299 – 133537WD 7Add
BLAST

Compositional bias

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Compositional biasi881 – 8877Poly-Ser

Sequence similaritiesi

Belongs to the WD repeat RAPTOR family.Curated
Contains 7 WD repeats.PROSITE-ProRule annotation

Keywords - Domaini

Repeat, WD repeat

Phylogenomic databases

eggNOGiNOG269318.
GeneTreeiENSGT00640000091541.
HOGENOMiHOG000184479.
HOVERGENiHBG059496.
InParanoidiQ8N122.
KOiK07204.
OMAiIRYYPSF.
OrthoDBiEOG7QC7V7.
PhylomeDBiQ8N122.
TreeFamiTF105729.

Family and domain databases

Gene3Di1.25.10.10. 2 hits.
2.130.10.10. 1 hit.
InterProiIPR011989. ARM-like.
IPR016024. ARM-type_fold.
IPR000357. HEAT.
IPR004083. Raptor.
IPR029347. Raptor_N.
IPR015943. WD40/YVTN_repeat-like_dom.
IPR001680. WD40_repeat.
IPR017986. WD40_repeat_dom.
[Graphical view]
PANTHERiPTHR12848. PTHR12848. 1 hit.
PfamiPF02985. HEAT. 1 hit.
PF14538. Raptor_N. 1 hit.
PF00400. WD40. 2 hits.
[Graphical view]
SMARTiSM00320. WD40. 7 hits.
[Graphical view]
SUPFAMiSSF48371. SSF48371. 2 hits.
SSF50978. SSF50978. 1 hit.
PROSITEiPS50294. WD_REPEATS_REGION. 1 hit.
[Graphical view]

Sequences (3)i

Sequence statusi: Complete.

This entry describes 3 isoformsi produced by alternative splicing. AlignAdd to basket

Isoform 1 (identifier: Q8N122-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MESEMLQSPL LGLGEEDEAD LTDWNLPLAF MKKRHCEKIE GSKSLAQSWR
60 70 80 90 100
MKDRMKTVSV ALVLCLNVGV DPPDVVKTTP CARLECWIDP LSMGPQKALE
110 120 130 140 150
TIGANLQKQY ENWQPRARYK QSLDPTVDEV KKLCTSLRRN AKEERVLFHY
160 170 180 190 200
NGHGVPRPTV NGEVWVFNKN YTQYIPLSIY DLQTWMGSPS IFVYDCSNAG
210 220 230 240 250
LIVKSFKQFA LQREQELEVA AINPNHPLAQ MPLPPSMKNC IQLAACEATE
260 270 280 290 300
LLPMIPDLPA DLFTSCLTTP IKIALRWFCM QKCVSLVPGV TLDLIEKIPG
310 320 330 340 350
RLNDRRTPLG ELNWIFTAIT DTIAWNVLPR DLFQKLFRQD LLVASLFRNF
360 370 380 390 400
LLAERIMRSY NCTPVSSPRL PPTYMHAMWQ AWDLAVDICL SQLPTIIEEG
410 420 430 440 450
TAFRHSPFFA EQLTAFQVWL TMGVENRNPP EQLPIVLQVL LSQVHRLRAL
460 470 480 490 500
DLLGRFLDLG PWAVSLALSV GIFPYVLKLL QSSARELRPL LVFIWAKILA
510 520 530 540 550
VDSSCQADLV KDNGHKYFLS VLADPYMPAE HRTMTAFILA VIVNSYHTGQ
560 570 580 590 600
EACLQGNLIA ICLEQLNDPH PLLRQWVAIC LGRIWQNFDS ARWCGVRDSA
610 620 630 640 650
HEKLYSLLSD PIPEVRCAAV FALGTFVGNS AERTDHSTTI DHNVAMMLAQ
660 670 680 690 700
LVSDGSPMVR KELVVALSHL VVQYESNFCT VALQFIEEEK NYALPSPATT
710 720 730 740 750
EGGSLTPVRD SPCTPRLRSV SSYGNIRAVA TARSLNKSLQ NLSLTEESGG
760 770 780 790 800
AVAFSPGNLS TSSSASSTLG SPENEEHILS FETIDKMRRA SSYSSLNSLI
810 820 830 840 850
GVSFNSVYTQ IWRVLLHLAA DPYPEVSDVA MKVLNSIAYK ATVNARPQRV
860 870 880 890 900
LDTSSLTQSA PASPTNKGVH IHQAGGSPPA SSTSSSSLTN DVAKQPVSRD
910 920 930 940 950
LPSGRPGTTG PAGAQYTPHS HQFPRTRKMF DKGPEQTADD ADDAAGHKSF
960 970 980 990 1000
ISATVQTGFC DWSARYFAQP VMKIPEEHDL ESQIRKEREW RFLRNSRVRR
1010 1020 1030 1040 1050
QAQQVIQKGI TRLDDQIFLN RNPGVPSVVK FHPFTPCIAV ADKDSICFWD
1060 1070 1080 1090 1100
WEKGEKLDYF HNGNPRYTRV TAMEYLNGQD CSLLLTATDD GAIRVWKNFA
1110 1120 1130 1140 1150
DLEKNPEMVT AWQGLSDMLP TTRGAGMVVD WEQETGLLMS SGDVRIVRIW
1160 1170 1180 1190 1200
DTDREMKVQD IPTGADSCVT SLSCDSHRSL IVAGLGDGSI RVYDRRMALS
1210 1220 1230 1240 1250
ECRVMTYREH TAWVVKASLQ KRPDGHIVSV SVNGDVRIFD PRMPESVNVL
1260 1270 1280 1290 1300
QIVKGLTALD IHPQADLIAC GSVNQFTAIY NSSGELINNI KYYDGFMGQR
1310 1320 1330
VGAISCLAFH PHWPHLAVGS NDYYISVYSV EKRVR
Length:1,335
Mass (Da):149,038
Last modified:October 1, 2002 - v1
Checksum:i688ED1943F45045A
GO
Isoform 2 (identifier: Q8N122-2) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     380-1335: Missing.

Show »
Length:379
Mass (Da):43,256
Checksum:iD67B01D4E68E859E
GO
Isoform 3 (identifier: Q8N122-3) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     504-661: Missing.

Show »
Length:1,177
Mass (Da):131,515
Checksum:i1CE0DA04E72105B2
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti217 – 2182LE → RQ in BAA92541 (PubMed:10718198).Curated

Alternative sequence

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Alternative sequencei380 – 1335956Missing in isoform 2. 1 PublicationVSP_010174Add
BLAST
Alternative sequencei504 – 661158Missing in isoform 3. 1 PublicationVSP_054042Add
BLAST

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY090663 mRNA. Translation: AAM09075.1.
AB082951 mRNA. Translation: BAC06490.1.
AC016245 Genomic DNA. No translation available.
AC109327 Genomic DNA. No translation available.
AC127496 Genomic DNA. No translation available.
AC133012 Genomic DNA. No translation available.
CH471099 Genomic DNA. Translation: EAW89618.1.
BC025180 mRNA. Translation: AAH25180.1.
BC033258 mRNA. Translation: AAH33258.1.
BC064515 mRNA. Translation: AAH64515.1.
BC136652 mRNA. Translation: AAI36653.1.
BC136654 mRNA. Translation: AAI36655.1.
AB037724 mRNA. Translation: BAA92541.1.
GQ183898 mRNA. Translation: ACS44766.1.
CCDSiCCDS11773.1. [Q8N122-1]
CCDS54175.1. [Q8N122-3]
RefSeqiNP_001156506.1. NM_001163034.1. [Q8N122-3]
NP_065812.1. NM_020761.2. [Q8N122-1]
UniGeneiHs.133044.

Genome annotation databases

EnsembliENST00000306801; ENSP00000307272; ENSG00000141564.
ENST00000544334; ENSP00000442479; ENSG00000141564. [Q8N122-3]
ENST00000570891; ENSP00000460136; ENSG00000141564. [Q8N122-2]
GeneIDi57521.
KEGGihsa:57521.
UCSCiuc002jys.3. human. [Q8N122-2]
uc002jyt.1. human. [Q8N122-1]

Keywords - Coding sequence diversityi

Alternative splicing

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AY090663 mRNA. Translation: AAM09075.1.
AB082951 mRNA. Translation: BAC06490.1.
AC016245 Genomic DNA. No translation available.
AC109327 Genomic DNA. No translation available.
AC127496 Genomic DNA. No translation available.
AC133012 Genomic DNA. No translation available.
CH471099 Genomic DNA. Translation: EAW89618.1.
BC025180 mRNA. Translation: AAH25180.1.
BC033258 mRNA. Translation: AAH33258.1.
BC064515 mRNA. Translation: AAH64515.1.
BC136652 mRNA. Translation: AAI36653.1.
BC136654 mRNA. Translation: AAI36655.1.
AB037724 mRNA. Translation: BAA92541.1.
GQ183898 mRNA. Translation: ACS44766.1.
CCDSiCCDS11773.1. [Q8N122-1]
CCDS54175.1. [Q8N122-3]
RefSeqiNP_001156506.1. NM_001163034.1. [Q8N122-3]
NP_065812.1. NM_020761.2. [Q8N122-1]
UniGeneiHs.133044.

3D structure databases

ProteinModelPortaliQ8N122.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi121582. 74 interactions.
DIPiDIP-39482N.
IntActiQ8N122. 31 interactions.
MINTiMINT-3038940.
STRINGi9606.ENSP00000307272.

Chemistry

ChEMBLiCHEMBL3120040.

PTM databases

PhosphoSiteiQ8N122.

Polymorphism and mutation databases

BioMutaiRPTOR.
DMDMi46577501.

Proteomic databases

MaxQBiQ8N122.
PaxDbiQ8N122.
PRIDEiQ8N122.

Protocols and materials databases

DNASUi57521.
Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENST00000306801; ENSP00000307272; ENSG00000141564.
ENST00000544334; ENSP00000442479; ENSG00000141564. [Q8N122-3]
ENST00000570891; ENSP00000460136; ENSG00000141564. [Q8N122-2]
GeneIDi57521.
KEGGihsa:57521.
UCSCiuc002jys.3. human. [Q8N122-2]
uc002jyt.1. human. [Q8N122-1]

Organism-specific databases

CTDi57521.
GeneCardsiGC17P078518.
HGNCiHGNC:30287. RPTOR.
HPAiCAB013514.
HPA029821.
HPA064306.
MIMi607130. gene.
neXtProtiNX_Q8N122.
PharmGKBiPA165432629.
HUGEiSearch...
GenAtlasiSearch...

Phylogenomic databases

eggNOGiNOG269318.
GeneTreeiENSGT00640000091541.
HOGENOMiHOG000184479.
HOVERGENiHBG059496.
InParanoidiQ8N122.
KOiK07204.
OMAiIRYYPSF.
OrthoDBiEOG7QC7V7.
PhylomeDBiQ8N122.
TreeFamiTF105729.

Enzyme and pathway databases

ReactomeiREACT_21285. Regulation of AMPK activity via LKB1.
REACT_21393. Regulation of Rheb GTPase activity by AMPK.
REACT_264164. HSF1-dependent transactivation.
REACT_355377. TP53 Regulates Metabolic Genes.
REACT_6754. S6K1-mediated signalling.
REACT_6836. Release of eIF4E.
REACT_6838. mTOR signalling.
SignaLinkiQ8N122.

Miscellaneous databases

ChiTaRSiRPTOR. human.
GeneWikiiRPTOR.
GenomeRNAii57521.
NextBioi35483332.
PROiQ8N122.
SOURCEiSearch...

Gene expression databases

BgeeiQ8N122.
ExpressionAtlasiQ8N122. baseline and differential.
GenevisibleiQ8N122. HS.

Family and domain databases

Gene3Di1.25.10.10. 2 hits.
2.130.10.10. 1 hit.
InterProiIPR011989. ARM-like.
IPR016024. ARM-type_fold.
IPR000357. HEAT.
IPR004083. Raptor.
IPR029347. Raptor_N.
IPR015943. WD40/YVTN_repeat-like_dom.
IPR001680. WD40_repeat.
IPR017986. WD40_repeat_dom.
[Graphical view]
PANTHERiPTHR12848. PTHR12848. 1 hit.
PfamiPF02985. HEAT. 1 hit.
PF14538. Raptor_N. 1 hit.
PF00400. WD40. 2 hits.
[Graphical view]
SMARTiSM00320. WD40. 7 hits.
[Graphical view]
SUPFAMiSSF48371. SSF48371. 2 hits.
SSF50978. SSF50978. 1 hit.
PROSITEiPS50294. WD_REPEATS_REGION. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the growth machinery."
    Kim D.-H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., Tempst P., Sabatini D.M.
    Cell 110:163-175(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, TISSUE SPECIFICITY, INTERACTION WITH 4EBP1 AND RPS6KB1.
  2. "Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action."
    Hara K., Maruki Y., Long X., Yoshino K., Oshiro N., Hidayat S., Tokunaga C., Avruch J., Yonezawa K.
    Cell 110:177-189(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA], FUNCTION, INTERACTION WITH 4EBP1 AND RPS6KB1.
  3. "DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage."
    Zody M.C., Garber M., Adams D.J., Sharpe T., Harrow J., Lupski J.R., Nicholson C., Searle S.M., Wilming L., Young S.K., Abouelleil A., Allen N.R., Bi W., Bloom T., Borowsky M.L., Bugalter B.E., Butler J., Chang J.L.
    , Chen C.-K., Cook A., Corum B., Cuomo C.A., de Jong P.J., DeCaprio D., Dewar K., FitzGerald M., Gilbert J., Gibson R., Gnerre S., Goldstein S., Grafham D.V., Grocock R., Hafez N., Hagopian D.S., Hart E., Norman C.H., Humphray S., Jaffe D.B., Jones M., Kamal M., Khodiyar V.K., LaButti K., Laird G., Lehoczky J., Liu X., Lokyitsang T., Loveland J., Lui A., Macdonald P., Major J.E., Matthews L., Mauceli E., McCarroll S.A., Mihalev A.H., Mudge J., Nguyen C., Nicol R., O'Leary S.B., Osoegawa K., Schwartz D.C., Shaw-Smith C., Stankiewicz P., Steward C., Swarbreck D., Venkataraman V., Whittaker C.A., Yang X., Zimmer A.R., Bradley A., Hubbard T., Birren B.W., Rogers J., Lander E.S., Nusbaum C.
    Nature 440:1045-1049(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
  4. Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
  5. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2), NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 995-1135 (ISOFORM 1).
    Tissue: Brain, Placenta and Testis.
  6. "Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro."
    Nagase T., Kikuno R., Ishikawa K., Hirosawa M., Ohara O.
    DNA Res. 7:65-73(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] OF 217-1335.
    Tissue: Brain.
  7. "Characterization of a novel splicing variant in the RAPTOR gene."
    Sun C., Southard C., Di Rienzo A.
    Mutat. Res. 662:88-92(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA] OF 488-594 (ISOFORM 3), TISSUE SPECIFICITY (ISOFORM 3).
  8. "Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control."
    Loewith R., Jacinto E., Wullschleger S., Lorberg A., Crespo J.L., Bonenfant D., Oppliger W., Jenoe P., Hall M.N.
    Mol. Cell 10:457-468(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH MTOR AND MLST8, IDENTIFICATION IN THE TORC1 COMPLEX, TISSUE SPECIFICITY.
  9. "TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function."
    Schalm S.S., Fingar D.C., Sabatini D.M., Blenis J.
    Curr. Biol. 13:797-806(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH EIF4EBP1.
  10. "Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function."
    Oshiro N., Yoshino K., Hidayat S., Tokunaga C., Hara K., Eguchi S., Avruch J., Yonezawa K.
    Genes Cells 9:359-366(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISSOCIATION OF COMPLEX BY RAPAMYCIN.
  11. "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks."
    Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M.
    Cell 127:635-648(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Cervix carcinoma.
  12. "A probability-based approach for high-throughput protein phosphorylation analysis and site localization."
    Beausoleil S.A., Villen J., Gerber S.A., Rush J., Gygi S.P.
    Nat. Biotechnol. 24:1285-1292(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-863, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Cervix carcinoma.
  13. "PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase."
    Sancak Y., Thoreen C.C., Peterson T.R., Lindquist R.A., Kang S.A., Spooner E., Carr S.A., Sabatini D.M.
    Mol. Cell 25:903-915(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH AKT1S1.
  14. "Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation."
    Carriere A., Cargnello M., Julien L.A., Gao H., Bonneil E., Thibault P., Roux P.P.
    Curr. Biol. 18:1269-1277(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-719; SER-721 AND SER-722.
  15. "Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis."
    Cantin G.T., Yi W., Lu B., Park S.K., Xu T., Lee J.-D., Yates J.R. III
    J. Proteome Res. 7:1346-1351(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Cervix carcinoma.
  16. Cited for: PHOSPHORYLATION AT SER-722 AND SER-792, MUTAGENESIS OF SER-722 AND SER-792, INTERACTION WITH 14-3-3.
  17. "Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle."
    Daub H., Olsen J.V., Bairlein M., Gnad F., Oppermann F.S., Korner R., Greff Z., Keri G., Stemmann O., Mann M.
    Mol. Cell 31:438-448(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Cervix carcinoma.
  18. Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-719; SER-859; SER-863 AND SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Cervix carcinoma.
  19. "Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach."
    Gauci S., Helbig A.O., Slijper M., Krijgsveld J., Heck A.J., Mohammed S.
    Anal. Chem. 81:4493-4501(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
  20. "Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy."
    Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., Iemura S., Natsume T., Takehana K., Yamada N., Guan J.L., Oshiro N., Mizushima N.
    Mol. Biol. Cell 20:1981-1991(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH ULK1.
  21. Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
  22. "Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions."
    Mayya V., Lundgren D.H., Hwang S.-I., Rezaul K., Wu L., Eng J.K., Rodionov V., Han D.K.
    Sci. Signal. 2:RA46-RA46(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-859; SER-863 AND SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Leukemic T-cell.
  23. "Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids."
    Sancak Y., Bar-Peled L., Zoncu R., Markhard A.L., Nada S., Sabatini D.M.
    Cell 141:290-303(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
  24. "Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation."
    Foster K.G., Acosta-Jaquez H.A., Romeo Y., Ekim B., Soliman G.A., Carriere A., Roux P.P., Ballif B.A., Fingar D.C.
    J. Biol. Chem. 285:80-94(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-696; THR-706; SER-855; SER-859; SER-863 AND SER-877.
  25. "Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis."
    Olsen J.V., Vermeulen M., Santamaria A., Kumar C., Miller M.L., Jensen L.J., Gnad F., Cox J., Jensen T.S., Nigg E.A., Brunak S., Mann M.
    Sci. Signal. 3:RA3-RA3(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-859; SER-863 AND SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Cervix carcinoma.
  26. Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
  27. "System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation."
    Rigbolt K.T., Prokhorova T.A., Akimov V., Henningsen J., Johansen P.T., Kratchmarova I., Kassem M., Mann M., Olsen J.V., Blagoev B.
    Sci. Signal. 4:RS3-RS3(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-863 AND SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
  28. Cited for: INTERACTION WITH HTR6.
  29. "Osmotic stress regulates mammalian target of rapamycin (mTOR) complex 1 via c-Jun N-terminal Kinase (JNK)-mediated Raptor protein phosphorylation."
    Kwak D., Choi S., Jeong H., Jang J.H., Lee Y., Jeon H., Lee M.N., Noh J., Cho K., Yoo J.S., Hwang D., Suh P.G., Ryu S.H.
    J. Biol. Chem. 287:18398-18407(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-696; THR-706 AND SER-863.
  30. Cited for: INTERACTION WITH G3BP1 AND SPAG5, SUBCELLULAR LOCATION.
  31. "PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription."
    Kamano Y., Saeki M., Egusa H., Kakihara Y., Houry W.A., Yatani H., Kamisaki Y.
    FEBS Lett. 587:3303-3308(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PIH1D1.
  32. "The Bardet-Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex."
    Cardenas-Rodriguez M., Irigoin F., Osborn D.P., Gascue C., Katsanis N., Beales P.L., Badano J.L.
    Hum. Mol. Genet. 22:4031-4042(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN CILIOGENESIS.
  33. "An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome."
    Bian Y., Song C., Cheng K., Dong M., Wang F., Huang J., Sun D., Wang L., Ye M., Zou H.
    J. Proteomics 96:253-262(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-738 AND SER-877, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
    Tissue: Liver.

Entry informationi

Entry nameiRPTOR_HUMAN
AccessioniPrimary (citable) accession number: Q8N122
Secondary accession number(s): B2RN36
, C6KEF2, F5H7J5, Q8N4V9, Q8TB32, Q9P2P3
Entry historyi
Integrated into UniProtKB/Swiss-Prot: April 26, 2004
Last sequence update: October 1, 2002
Last modified: July 22, 2015
This is version 134 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. Human chromosome 17
    Human chromosome 17: entries, gene names and cross-references to MIM
  2. MIM cross-references
    Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot
  3. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into Uniref entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.