Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q8CIW6 (S26A6_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 74. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (2) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Solute carrier family 26 member 6
Alternative name(s):
Anion exchange transporter
Chloride-formate exchanger
Pendrin-L1
Pendrin-like protein 1
Putative anion transporter-1
Short name=Pat-1
Gene names
Name:Slc26a6
Synonyms:Cfex, Pat1
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length758 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Apical membrane anion-exchanger with wide epithelial distribution that plays a role as a component of the pH buffering system for maintaining acid-base homeostasis. Acts as a versatile DIDS-sensitive inorganic and organic anion transporter that mediates the uptake of monovalent anions like chloride, bicarbonate, formate and hydroxyl ion and divalent anions like sulfate and oxalate. Function in multiple exchange modes involving pairs of these anions, which include chloride-bicarbonate, chloride-oxalate, oxalate-formate, oxalate-sulfate and chloride-formate exchange. Apical membrane chloride-bicarbonate exchanger that mediates luminal chloride absorption and bicarbonate secretion by the small intestinal brush border membrane and contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption, possibly by providing a bicarbonate import pathway. Its association with carbonic anhydrase CA2 forms a bicarbonate transport metabolon; hence maximizes the local concentration of bicarbonate at the transporter site. Mediates also intestinal chloride absorption and oxalate secretion, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Transepithelial oxalate secretion, chloride-formate, chloride-oxalate and chloride-bicarbonate transport activities in the duodenum are inhibited by PKC activation in a calcium-independent manner. The apical membrane chloride-bicarbonate exchanger provides also a major route for fluid and bicarbonate secretion into the proximal tubules of the kidney as well as into the proximal part of the interlobular pancreatic ductal tree, where it mediates electrogenic chloride-bicarbonate exchange with a chloride-bicarbonate stoichiometry of 1:2, and hence will dilute and alkalinize protein-rich acinar secretion. Mediates also the transcellular sulfate absorption and oxalate secretion across the apical membrane in the duodenum and the formate ion efflux at the apical brush border of cells in the proximal tubules of kidney. Plays a role in sperm capacitation by increasing intracellular pH. Ref.1 Ref.2 Ref.3 Ref.8 Ref.9 Ref.10 Ref.11 Ref.12 Ref.13 Ref.14 Ref.15 Ref.16 Ref.17 Ref.18 Ref.19 Ref.20 Ref.21 Ref.22

Enzyme regulation

Apical membrane chloride-bicarbonate exchange activity of the pancreatic duct is inhibited by DIDS By similarity. Apical membrane chloride-formate exchange activity in the proximal tubules of the kidney and oxalate secretion in the duodenum are inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS - an inhibitor of several anion channels and transporters). Ref.1 Ref.2 Ref.3 Ref.9 Ref.20 Ref.21

Subunit structure

Interacts (via C-terminal cytoplasmic domain) with CA2; the interaction stimulates chloride-bicarbonate exchange activity. Interacts with SLC9A3R1 (via the PDZ domains). Interacts with SLC9A3R2 (via the PDZ domains) By similarity. Interacts (via C-terminal domain) with PDZK1 (via C-terminal PDZ domain); the interaction induces chloride and oxalate exchange transport. Interacts with CFTR, SLC26A3 and SLC9A3R1. Ref.10 Ref.22

Subcellular location

Membrane; Multi-pass membrane protein. Cell membrane; Multi-pass membrane protein. Apical cell membrane; Multi-pass membrane protein. Cytoplasmic vesicle membrane; Multi-pass membrane protein. Microsome. Note: Colocalized with CA2 at the surface of the cell membrane in order to form a bicarbonate transport metabolon; colocalization is reduced in phorbol myristate acetate (PMA)-induced cells By similarity. Localized in sperm membranes. Colocalizes with CFTR at the midpiece of sperm tail. Localizes to the apical membrane brush border of epithelial cells in the proximal tubules of kidney, of enterocytes of the small intestine and of gastric parietal cells in the stomach. May be translocated from the cytosolic surface of the cell membrane to the intracellular space by PKC in phorbol myristate acetate (PMA)-induced cells. Ref.1 Ref.8 Ref.10 Ref.13 Ref.15 Ref.17 Ref.22

Tissue specificity

Expressed in kidney (at protein level). Highly expressed in stomach, kidney, heart and small intestine, low in the lung, liver, testis, brain, skeletal muscle and colon. Expressed in spermatogenic cells. Isoform 1 is expressed in intestine, kidney, testis, brain, muscle, heart, and stomach. Ref.1 Ref.2 Ref.8 Ref.14 Ref.22

Induction

Up-regulated by dietary fructose intake (at protein level). Ref.1 Ref.2 Ref.3 Ref.9 Ref.17 Ref.20 Ref.21

Post-translational modification

Phosphorylated on serine residues by PKC; the phosphorylation disrupts interaction with carbonic anhydrase CA2 and reduces bicarbonate transport activity in a phorbol myristate acetate (PMA)-induced manner By similarity.

Disruption phenotype

Mice show an important decrease in salt absorption in the intestine and failed to develop hypertension on a high-fructose diet. Show a reduction in pancreatic duct fluid and bicarbonate secretion. Show enhanced oxalate absorption in the intestine leading to hyperoxalemia and hyperoxaluria with high incidence of calcium-oxalate stones formation. Ref.11 Ref.13 Ref.17

Sequence similarities

Contains 1 STAS domain.

Biophysicochemical properties

Kinetic parameters:

KM=0.3 mM for oxalate, Ref.9 Ref.3 Ref.9

KM=0.314 mM for oxalate, Ref.3

KM=3.87 mM for formate, Ref.3

Sequence caution

The sequence AC168054 differs from that shown. Reason: Erroneous gene model prediction.

The sequence CAAA01111125 differs from that shown. Reason: Erroneous gene model prediction.

The sequence CAAA01200220 differs from that shown. Reason: Erroneous gene model prediction.

Ontologies

Keywords
   Biological processAnion exchange
Antiport
Ion transport
Transport
   Cellular componentCell membrane
Cytoplasmic vesicle
Endoplasmic reticulum
Membrane
Microsome
   Coding sequence diversityAlternative splicing
   DomainTransmembrane
Transmembrane helix
   LigandChloride
   Molecular functionChloride channel
Ion channel
   PTMPhosphoprotein
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processangiotensin-activated signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

bicarbonate transport

Inferred from direct assay Ref.9Ref.2. Source: UniProtKB

cellular response to cAMP

Inferred from direct assay Ref.21. Source: UniProtKB

cellular response to fructose stimulus

Inferred from direct assay Ref.17. Source: UniProtKB

chloride transmembrane transport

Inferred from direct assay Ref.1Ref.8Ref.9Ref.2Ref.15. Source: GOC

chloride transport

Inferred from direct assay Ref.9Ref.2Ref.15. Source: UniProtKB

epithelial fluid transport

Inferred from mutant phenotype Ref.17. Source: UniProtKB

formate transport

Inferred from direct assay Ref.9Ref.2Ref.15. Source: UniProtKB

intestinal absorption

Inferred from mutant phenotype Ref.20. Source: UniProtKB

intracellular pH elevation

Inferred from mutant phenotype Ref.22. Source: UniProtKB

mannitol transport

Inferred from mutant phenotype Ref.20. Source: UniProtKB

oxalate transport

Inferred from direct assay Ref.9Ref.2. Source: UniProtKB

oxalic acid secretion

Inferred from mutant phenotype Ref.20. Source: UniProtKB

positive regulation of dipeptide transmembrane transport

Inferred from mutant phenotype Ref.18. Source: UniProtKB

protein kinase C signaling

Inferred from direct assay Ref.15. Source: UniProtKB

regulation of intracellular pH

Inferred from mutant phenotype Ref.18. Source: UniProtKB

sperm capacitation

Inferred from mutant phenotype Ref.22. Source: UniProtKB

sulfate transmembrane transport

Inferred from direct assay Ref.9Ref.2. Source: GOC

sulfate transport

Inferred from direct assay Ref.9Ref.2. Source: UniProtKB

transepithelial chloride transport

Inferred from direct assay Ref.1. Source: UniProtKB

transepithelial transport

Inferred from mutant phenotype Ref.10Ref.13Ref.18Ref.20. Source: UniProtKB

transmembrane transport

Inferred from direct assay Ref.2. Source: GOC

   Cellular_componentapical plasma membrane

Inferred from direct assay Ref.10Ref.17Ref.1. Source: UniProtKB

brush border membrane

Inferred from direct assay Ref.10Ref.13Ref.1. Source: UniProtKB

chloride channel complex

Inferred from electronic annotation. Source: UniProtKB-KW

cytoplasmic vesicle membrane

Inferred from electronic annotation. Source: UniProtKB-SubCell

endoplasmic reticulum

Inferred from electronic annotation. Source: UniProtKB-KW

integral component of plasma membrane

Inferred from direct assay Ref.1. Source: MGI

membrane

Inferred from direct assay Ref.22. Source: UniProtKB

membrane-bounded vesicle

Inferred from direct assay Ref.8. Source: UniProtKB

plasma membrane

Inferred from direct assay Ref.15. Source: UniProtKB

sperm midpiece

Inferred from direct assay Ref.22. Source: UniProtKB

vesicle membrane

Inferred from direct assay Ref.10Ref.13. Source: UniProtKB

   Molecular_functionPDZ domain binding

Inferred from direct assay Ref.10. Source: UniProtKB

anion:anion antiporter activity

Inferred from direct assay Ref.9Ref.1Ref.2. Source: UniProtKB

bicarbonate transmembrane transporter activity

Inferred from direct assay Ref.8Ref.9Ref.2. Source: UniProtKB

chloride channel activity

Inferred from electronic annotation. Source: UniProtKB-KW

chloride transmembrane transporter activity

Inferred from direct assay Ref.8Ref.9Ref.2Ref.15. Source: UniProtKB

efflux transmembrane transporter activity

Inferred from direct assay Ref.2. Source: UniProtKB

formate efflux transmembrane transporter activity

Inferred from mutant phenotype Ref.21. Source: UniProtKB

formate transmembrane transporter activity

Inferred from direct assay Ref.1. Source: MGI

formate uptake transmembrane transporter activity

Inferred from direct assay Ref.9. Source: UniProtKB

oxalate transmembrane transporter activity

Inferred from direct assay Ref.9Ref.2. Source: UniProtKB

protein binding

Inferred from physical interaction Ref.10Ref.22. Source: UniProtKB

secondary active sulfate transmembrane transporter activity

Inferred from electronic annotation. Source: InterPro

sulfate transmembrane transporter activity

Inferred from direct assay Ref.9Ref.2. Source: UniProtKB

Complete GO annotation...

Binary interactions

Alternative products

This entry describes 3 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q8CIW6-1)

Also known as: Slc26a6a;

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q8CIW6-2)

Also known as: Slc26a6b;

The sequence of this isoform differs from the canonical sequence as follows:
     1-23: Missing.
Isoform 3 (identifier: Q8CIW6-3)

The sequence of this isoform differs from the canonical sequence as follows:
     1-23: Missing.
     691-758: IFRDFREIEV...PKSPVLATKL → VRDCRQARAP...PALFVAADFP

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 758758Solute carrier family 26 member 6
PRO_0000423423

Regions

Topological domain1 – 117117Cytoplasmic Potential
Transmembrane118 – 13821Helical; Potential
Topological domain139 – 18749Extracellular Potential
Transmembrane188 – 20821Helical; Potential
Topological domain209 – 26355Cytoplasmic Potential
Transmembrane264 – 28421Helical; Potential
Topological domain285 – 2928Extracellular Potential
Transmembrane293 – 31321Helical; Potential
Topological domain314 – 34027Cytoplasmic Potential
Transmembrane341 – 36121Helical; Potential
Topological domain362 – 38019Extracellular Potential
Transmembrane381 – 40121Helical; Potential
Topological domain402 – 41716Cytoplasmic Potential
Transmembrane418 – 43821Helical; Potential
Topological domain439 – 48547Extracellular Potential
Transmembrane486 – 50621Helical; Potential
Topological domain507 – 758252Cytoplasmic Potential
Domain531 – 741211STAS

Amino acid modifications

Modified residue6031Phosphoserine; by PKC By similarity
Modified residue7511Phosphoserine By similarity

Natural variations

Alternative sequence1 – 2323Missing in isoform 2 and isoform 3.
VSP_047853
Alternative sequence691 – 75868IFRDF…LATKL → VRDCRQARAPQAFMLILPLA SHLLATPPPNKPSPLSSPTK PCPIAASLRPALFVAADFP in isoform 3.
VSP_047854

Experimental info

Mutagenesis5751T → A: Does not inhibit formate transport in PMA-induced cells. Ref.15
Sequence conflict251E → G in AAK51131. Ref.1
Sequence conflict251E → G in BAC55182. Ref.3
Sequence conflict5721R → P in AAL13129. Ref.2
Sequence conflict5721R → P in AAN07089. Ref.2

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 (Slc26a6a) [UniParc].

Last modified September 18, 2013. Version 2.
Checksum: 1512CC3A417D037B

FASTA75882,834
        10         20         30         40         50         60 
MGLPDGSDQG THQTQALLSA AQEMELQRRD YHVERPLLNQ EQLEDLGHWG PAAKTHQWRT 

        70         80         90        100        110        120 
WFRCSRARAH SLLLQHVPVL GWLPRYPVRE WLLGDLLSGL SVAIMQLPQG LAYALLAGLP 

       130        140        150        160        170        180 
PMFGLYSSFY PVFIYFLFGT SRHISVGTFA VMSVMVGSVT ESLTADKAFV QGLNATADDA 

       190        200        210        220        230        240 
RVQVAYTLSF LVGLFQVGLG LVHFGFVVTY LSEPLVRSYT TAASVQVLVS QLKYVFGIKL 

       250        260        270        280        290        300 
SSHSGPLSVI YTVLEVCAQL PETVPGTVVT AIVAGVALVL VKLLNEKLHR RLPLPIPGEL 

       310        320        330        340        350        360 
LTLIGATGIS YGVKLNDRFK VDVVGNITTG LIPPVAPKTE LFATLVGNAF AIAVVGFAIA 

       370        380        390        400        410        420 
ISLGKIFALR HGYRVDSNQE LVALGLSNLI GGFFQCFPVS CSMSRSLVQE STGGNTQVAG 

       430        440        450        460        470        480 
AVSSLFILLI IVKLGELFRD LPKAVLAAVI IVNLKGMMKQ FSDICSLWKA NRVDLLIWLV 

       490        500        510        520        530        540 
TFVATILLNL DIGLAVSIVF SLLLVVVRMQ LPHYSVLGQV PDTDIYRDVA EYSGAKEVPG 

       550        560        570        580        590        600 
VKVFRSSATL YFANAELYSD SLKEKCGVDV DRLITQKKKR IKKQEMKLKR MKKAKKSQKQ 

       610        620        630        640        650        660 
DASSKISSVS VNVNTNLEDV KSNDVEGSEA KVHQGEELQD VVSSNQEDAK APTMTSLKSL 

       670        680        690        700        710        720 
GLPQPGFHSL ILDLSTLSFV DTVCIKSLKN IFRDFREIEV EVYIAACYSP VVAQLEAGHF 

       730        740        750 
FDESITKQHV FASVHDAVTF ALSHRKSVPK SPVLATKL 

« Hide

Isoform 2 (Slc26a6b) [UniParc].

Checksum: 391DA011CB54C00A
Show »

FASTA73580,496
Isoform 3 [UniParc].

Checksum: 8390F9A703F8EE94
Show »

FASTA72679,108

References

« Hide 'large scale' references
[1]"Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells."
Knauf F., Yang C.L., Thomson R.B., Mentone S.A., Giebisch G., Aronson P.S.
Proc. Natl. Acad. Sci. U.S.A. 98:9425-9430(2001) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), FUNCTION, ENZYME REGULATION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
Strain: BALB/c.
[2]"Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1."
Xie Q., Welch R., Mercado A., Romero M.F., Mount D.B.
Am. J. Physiol. 283:F826-F838(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS 1 AND 2), FUNCTION, ENZYME REGULATION, TISSUE SPECIFICITY.
Strain: C57BL/6J.
[3]"Role of anion exchange transporter PAT1 (SLC26A6) in intestinal absorption of organic anions."
Nozawa T., Sugiura S., Hashino Y., Tsuji A., Tamai I.
J. Drug. Target. 12:97-104(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), FUNCTION, ENZYME REGULATION, BIOPHYSICOCHEMICAL PROPERTIES.
Strain: BALB/c.
Tissue: Kidney.
[4]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 3).
Strain: C57BL/6J.
Tissue: Medulla oblongata.
[5]"Lineage-specific biology revealed by a finished genome assembly of the mouse."
Church D.M., Goodstadt L., Hillier L.W., Zody M.C., Goldstein S., She X., Bult C.J., Agarwala R., Cherry J.L., DiCuccio M., Hlavina W., Kapustin Y., Meric P., Maglott D., Birtle Z., Marques A.C., Graves T., Zhou S. expand/collapse author list , Teague B., Potamousis K., Churas C., Place M., Herschleb J., Runnheim R., Forrest D., Amos-Landgraf J., Schwartz D.C., Cheng Z., Lindblad-Toh K., Eichler E.E., Ponting C.P.
PLoS Biol. 7:E1000112-E1000112(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: C57BL/6J.
[6]Mural R.J., Adams M.D., Myers E.W., Smith H.O., Venter J.C.
Submitted (JUL-2005) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[7]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
Strain: FVB/N.
Tissue: Salivary gland.
[8]"Identification of an apical Cl(-)/HCO3(-) exchanger in the small intestine."
Wang Z., Petrovic S., Mann E., Soleimani M.
Am. J. Physiol. 282:G573-G579(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
[9]"Specificity of anion exchange mediated by mouse Slc26a6."
Jiang Z., Grichtchenko I.I., Boron W.F., Aronson P.S.
J. Biol. Chem. 277:33963-33967(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, ENZYME REGULATION, BIOPHYSICOCHEMICAL PROPERTIES.
[10]"Role of PDZK1 in membrane expression of renal brush border ion exchangers."
Thomson R.B., Wang T., Thomson B.R., Tarrats L., Girardi A., Mentone S., Soleimani M., Kocher O., Aronson P.S.
Proc. Natl. Acad. Sci. U.S.A. 102:13331-13336(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH PDZK1, SUBCELLULAR LOCATION.
[11]"Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct HCO3-secretion: relevance to cystic fibrosis."
Wang Y., Soyombo A.A., Shcheynikov N., Zeng W., Dorwart M., Marino C.R., Thomas P.J., Muallem S.
EMBO J. 25:5049-5057(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DISRUPTION PHENOTYPE.
[12]"Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6."
Shcheynikov N., Wang Y., Park M., Ko S.B., Dorwart M., Naruse S., Thomas P.J., Muallem S.
J. Gen. Physiol. 127:511-524(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[13]"Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6."
Jiang Z., Asplin J.R., Evan A.P., Rajendran V.M., Velazquez H., Nottoli T.P., Binder H.J., Aronson P.S.
Nat. Genet. 38:474-478(2006) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, DISRUPTION PHENOTYPE.
[14]"PAT-1 (Slc26a6) is the predominant apical membrane Cl-/HCO3-exchanger in the upper villous epithelium of the murine duodenum."
Simpson J.E., Schweinfest C.W., Shull G.E., Gawenis L.R., Walker N.M., Boyle K.T., Soleimani M., Clarke L.L.
Am. J. Physiol. 292:G1079-G1088(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, TISSUE SPECIFICITY.
[15]"Regulation of anion exchanger Slc26a6 by protein kinase C."
Hassan H.A., Mentone S., Karniski L.P., Rajendran V.M., Aronson P.S.
Am. J. Physiol. 292:C1485-C1492(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION (ISOFORM 2), SUBCELLULAR LOCATION, MUTAGENESIS OF THR-575.
[16]"Slc26a6 (PAT1) deletion downregulates the apical Na+/H+ exchanger in the straight segment of the proximal tubule."
Petrovic S., Barone S., Wang Z., McDonough A.A., Amlal H., Soleimani M.
Am. J. Nephrol. 28:330-338(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[17]"Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5."
Singh A.K., Amlal H., Haas P.J., Dringenberg U., Fussell S., Barone S.L., Engelhardt R., Zuo J., Seidler U., Soleimani M.
Kidney Int. 74:438-447(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION, INDUCTION, DISRUPTION PHENOTYPE.
[18]"Putative anion transporter-1 (Pat-1, Slc26a6) contributes to intracellular pH regulation during H+-dipeptide transport in duodenal villous epithelium."
Simpson J.E., Walker N.M., Supuran C.T., Soleimani M., Clarke L.L.
Am. J. Physiol. 298:G683-G691(2010) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[19]"Functional activity of Pat-1 (Slc26a6) Cl(-)/HCO(3)(-) exchange in the lower villus epithelium of murine duodenum."
Walker N.M., Simpson J.E., Hoover E.E., Brazill J.M., Schweinfest C.W., Soleimani M., Clarke L.L.
Acta Physiol. 201:21-31(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION.
[20]"Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion."
Knauf F., Ko N., Jiang Z., Robertson W.G., Van Itallie C.M., Anderson J.M., Aronson P.S.
J. Am. Soc. Nephrol. 22:2247-2255(2011) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, ENZYME REGULATION.
[21]"Deletion of Slc26a6 alters the stoichiometry of apical Cl-/HCO-3 exchange in mouse pancreatic duct."
Song Y., Yamamoto A., Steward M.C., Ko S.B., Stewart A.K., Soleimani M., Liu B.C., Kondo T., Jin C.X., Ishiguro H.
Am. J. Physiol. 303:C815-C824(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, ENZYME REGULATION.
[22]"Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation."
Chavez J.C., Hernandez-Gonzalez E.O., Wertheimer E., Visconti P.E., Darszon A., Trevino C.L.
Biol. Reprod. 86:1-14(2012) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH CFTR; SLC26A3 AND SLC9A3R1, SUBCELLULAR LOCATION, TISSUE SPECIFICITY.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AY032863 mRNA. Translation: AAK51131.1.
AF248494 mRNA. Translation: AAN07089.1.
AY049076 mRNA. Translation: AAL13129.1.
AB099881 mRNA. Translation: BAC55182.1.
AK163670 mRNA. Translation: BAE37450.1.
AK163671 mRNA. Translation: BAE37451.1.
AC168054 Genomic DNA. No translation available.
CAAA01111125 Genomic DNA. No translation available.
CAAA01200220 Genomic DNA. No translation available.
CH466560 Genomic DNA. Translation: EDL21319.1.
BC028856 mRNA. Translation: AAH28856.1.
RefSeqNP_599252.2. NM_134420.4. [Q8CIW6-2]
UniGeneMm.45201.

3D structure databases

ProteinModelPortalQ8CIW6.
SMRQ8CIW6. Positions 512-561, 668-738.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

IntActQ8CIW6. 3 interactions.
STRING10090.ENSMUSP00000095979.

Protein family/group databases

TCDB2.A.53.2.8. the sulfate permease (sulp) family.

PTM databases

PhosphoSiteQ8CIW6.

Proteomic databases

PRIDEQ8CIW6.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

GeneID171429.
KEGGmmu:171429.
UCSCuc029xge.1. mouse.

Organism-specific databases

CTD65010.
MGIMGI:2159728. Slc26a6.

Phylogenomic databases

eggNOGCOG0659.
HOGENOMHOG000006546.
HOVERGENHBG000639.
InParanoidQ8CIW6.
KOK14704.
OrthoDBEOG76T9QT.
TreeFamTF313784.

Gene expression databases

GenevestigatorQ8CIW6.

Family and domain databases

Gene3D3.30.750.24. 2 hits.
InterProIPR018045. S04_transporter_CS.
IPR002645. STAS_dom.
IPR001902. SulP_transpt.
IPR011547. Sulph_transpt.
[Graphical view]
PfamPF01740. STAS. 1 hit.
PF00916. Sulfate_transp. 1 hit.
[Graphical view]
SUPFAMSSF52091. SSF52091. 2 hits.
TIGRFAMsTIGR00815. sulP. 1 hit.
PROSITEPS01130. SLC26A. 1 hit.
PS50801. STAS. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio35555101.
PROE9Q4D3.
SOURCESearch...

Entry information

Entry nameS26A6_MOUSE
AccessionPrimary (citable) accession number: Q8CIW6
Secondary accession number(s): E9Q4D3 expand/collapse secondary AC list , Q3TQD3, Q812E2, Q8CJD0, Q8K142, Q923J3
Entry history
Integrated into UniProtKB/Swiss-Prot: September 18, 2013
Last sequence update: September 18, 2013
Last modified: July 9, 2014
This is version 74 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot