Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Myocyte-specific enhancer factor 2C

Gene

Mef2c

Organism
Mus musculus (Mouse)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. May also be involved in neurogenesis and in the development of cortical architecture. Isoform 3 and isoform 4, which lack the repressor domain, are more active than isoform 1, isoform 2 and isoform 5 (By similarity). Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells.By similarity7 Publications

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei433 – 4342CleavageCurated

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
DNA bindingi58 – 8629Mef2-typeSequence AnalysisAdd
BLAST

GO - Molecular functioni

GO - Biological processi

  • apoptotic process Source: UniProtKB-KW
  • B cell homeostasis Source: UniProtKB
  • B cell proliferation Source: UniProtKB
  • B cell receptor signaling pathway Source: UniProtKB
  • blood vessel development Source: MGI
  • blood vessel remodeling Source: MGI
  • cardiac muscle cell differentiation Source: UniProtKB
  • cardiac muscle hypertrophy in response to stress Source: MGI
  • cardiac ventricle formation Source: UniProtKB
  • cartilage morphogenesis Source: MGI
  • cell fate commitment Source: MGI
  • cell morphogenesis involved in neuron differentiation Source: Alzheimers_University_of_Toronto
  • cellular response to calcium ion Source: UniProtKB
  • cellular response to drug Source: UniProtKB
  • cellular response to fluid shear stress Source: UniProtKB
  • cellular response to lipopolysaccharide Source: UniProtKB
  • cellular response to parathyroid hormone stimulus Source: UniProtKB
  • cellular response to transforming growth factor beta stimulus Source: UniProtKB
  • cellular response to trichostatin A Source: UniProtKB
  • chondrocyte differentiation Source: MGI
  • embryonic skeletal system morphogenesis Source: MGI
  • embryonic viscerocranium morphogenesis Source: MGI
  • endochondral ossification Source: MGI
  • epithelial cell proliferation involved in renal tubule morphogenesis Source: UniProtKB
  • germinal center formation Source: UniProtKB
  • glomerulus morphogenesis Source: UniProtKB
  • heart development Source: MGI
  • heart looping Source: UniProtKB
  • humoral immune response Source: UniProtKB
  • learning or memory Source: UniProtKB
  • MAPK cascade Source: UniProtKB
  • melanocyte differentiation Source: UniProtKB
  • monocyte differentiation Source: MGI
  • muscle cell fate determination Source: MGI
  • negative regulation of epithelial cell proliferation Source: UniProtKB
  • negative regulation of gene expression Source: UniProtKB
  • negative regulation of neuron apoptotic process Source: UniProtKB
  • negative regulation of ossification Source: UniProtKB
  • negative regulation of transcription from RNA polymerase II promoter Source: UniProtKB
  • nephron tubule epithelial cell differentiation Source: UniProtKB
  • neural crest cell differentiation Source: UniProtKB
  • neuron development Source: UniProtKB
  • neuron differentiation Source: UniProtKB
  • neuron migration Source: Alzheimers_University_of_Toronto
  • osteoblast differentiation Source: UniProtKB
  • outflow tract morphogenesis Source: MGI
  • palate development Source: MGI
  • platelet formation Source: UniProtKB
  • positive regulation of alkaline phosphatase activity Source: UniProtKB
  • positive regulation of B cell proliferation Source: UniProtKB
  • positive regulation of behavioral fear response Source: UniProtKB
  • positive regulation of bone mineralization Source: UniProtKB
  • positive regulation of cardiac muscle cell differentiation Source: UniProtKB
  • positive regulation of cardiac muscle cell proliferation Source: UniProtKB
  • positive regulation of cell proliferation in bone marrow Source: MGI
  • positive regulation of gene expression Source: UniProtKB
  • positive regulation of macrophage apoptotic process Source: UniProtKB
  • positive regulation of MAP kinase activity Source: Alzheimers_University_of_Toronto
  • positive regulation of myoblast differentiation Source: UniProtKB
  • positive regulation of neuron differentiation Source: UniProtKB
  • positive regulation of osteoblast differentiation Source: UniProtKB
  • positive regulation of protein homodimerization activity Source: MGI
  • positive regulation of skeletal muscle cell differentiation Source: MGI
  • positive regulation of skeletal muscle tissue development Source: UniProtKB
  • positive regulation of transcription, DNA-templated Source: UniProtKB
  • positive regulation of transcription from RNA polymerase II promoter Source: UniProtKB
  • primary heart field specification Source: UniProtKB
  • regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate selective glutamate receptor activity Source: Alzheimers_University_of_Toronto
  • regulation of dendritic spine development Source: Alzheimers_University_of_Toronto
  • regulation of excitatory postsynaptic membrane potential Source: Alzheimers_University_of_Toronto
  • regulation of germinal center formation Source: UniProtKB
  • regulation of megakaryocyte differentiation Source: UniProtKB
  • regulation of neuron apoptotic process Source: Alzheimers_University_of_Toronto
  • regulation of neurotransmitter secretion Source: Alzheimers_University_of_Toronto
  • regulation of N-methyl-D-aspartate selective glutamate receptor activity Source: Alzheimers_University_of_Toronto
  • regulation of sarcomere organization Source: MGI
  • regulation of synapse assembly Source: Alzheimers_University_of_Toronto
  • regulation of synaptic activity Source: UniProtKB
  • regulation of synaptic plasticity Source: Alzheimers_University_of_Toronto
  • regulation of synaptic transmission, glutamatergic Source: Alzheimers_University_of_Toronto
  • regulation of transcription, DNA-templated Source: MGI
  • renal tubule morphogenesis Source: UniProtKB
  • response to ischemia Source: Alzheimers_University_of_Toronto
  • secondary heart field specification Source: UniProtKB
  • sinoatrial valve morphogenesis Source: UniProtKB
  • skeletal muscle cell differentiation Source: UniProtKB
  • skeletal muscle tissue development Source: MGI
  • smooth muscle cell differentiation Source: MGI
  • transcription from RNA polymerase II promoter Source: MGI
  • ventricular cardiac muscle cell differentiation Source: UniProtKB
Complete GO annotation...

Keywords - Molecular functioni

Activator, Developmental protein

Keywords - Biological processi

Apoptosis, Differentiation, Neurogenesis, Transcription, Transcription regulation

Keywords - Ligandi

DNA-binding

Names & Taxonomyi

Protein namesi
Recommended name:
Myocyte-specific enhancer factor 2C
Gene namesi
Name:Mef2c
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
ProteomesiUP000000589 Componenti: Chromosome 13

Organism-specific databases

MGIiMGI:99458. Mef2c.

Subcellular locationi

  • Nucleus PROSITE-ProRule annotation

GO - Cellular componenti

Complete GO annotation...

Keywords - Cellular componenti

Nucleus

Pathology & Biotechi

Disruption phenotypei

Mice show impairment in hippocampal-dependent learning and also increase in the number of excitatory synapses and potentiation of basal and evoked synaptic transmission. Mice surviving to adulthood manifest smaller, apparently less mature neurons and smaller whole brain size, with resultant aberrant electrophysiology and behavior. Mice exhibit thrombocytopenia and a defect in B-lymphopoiesis.3 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi3 – 31R → T: Increased mobility in differentiating cells. Greatly reduced DNA binding. 1 Publication
Mutagenesisi4 – 41K → Q: 7-fold increase in DNA binding. 1 Publication
Mutagenesisi4 – 41K → R: Reduced acetylation by 30%. Some loss of DNA binding and transactivation activity. 1 Publication
Mutagenesisi59 – 602ST → CR: Reduced DNA binding activity.
Mutagenesisi59 – 602ST → DD: Enhanced DNA binding activity.
Mutagenesisi59 – 591S → A: Reduced DNA binding activity. 1 Publication
Mutagenesisi59 – 591S → D: Enhanced DNA binding activity. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 474474Myocyte-specific enhancer factor 2CPRO_0000199434Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei4 – 41N6-acetyllysine1 Publication
Modified residuei59 – 591Phosphoserine; by CK21 Publication
Modified residuei116 – 1161N6-acetyllysineBy similarity
Modified residuei119 – 1191N6-acetyllysineBy similarity
Modified residuei234 – 2341N6-acetyllysineBy similarity
Modified residuei239 – 2391N6-acetyllysineBy similarity
Modified residuei252 – 2521N6-acetyllysineBy similarity
Modified residuei264 – 2641N6-acetyllysineBy similarity
Modified residuei293 – 2931Phosphothreonine; by MAPK14By similarity
Modified residuei300 – 3001Phosphothreonine; by MAPK14By similarity
Cross-linki391 – 391Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in SUMO)By similarity
Modified residuei396 – 3961Phosphoserine; by CDK5By similarity
Modified residuei420 – 4201Phosphoserine; by MAPK7By similarity

Post-translational modificationi

Phosphorylation on Ser-59 enhances DNA binding activity (By similarity). Phosphorylation on Ser-396 is required for Lys-391 sumoylation and inhibits transcriptional activity.By similarity1 Publication
Acetylated by p300 on several sites in diffentiating myocytes (By similarity). Acetylation on Lys-4 increases DNA binding and transactivation.By similarity1 Publication
Sumoylated on Lys-391 with SUMO2 but not by SUMO1 represses transcriptional activity.By similarity
Proteolytically cleaved in cerebellar granule neurons, probably by caspase 7, following neurotoxicity. Preferentially cleaves the CDK5-mediated hyperphosphorylated form which leads to neuron apoptosis and transcriptional inactivation (By similarity).By similarity

Keywords - PTMi

Acetylation, Isopeptide bond, Phosphoprotein, Ubl conjugation

Proteomic databases

MaxQBiQ8CFN5.
PaxDbiQ8CFN5.
PRIDEiQ8CFN5.

PTM databases

PhosphoSiteiQ8CFN5.

Expressioni

Tissue specificityi

Widely expressed though mainly restricted to skeletal and cardiac muscle, brain, neurons and lymphocytes. Beta beta domain-lacking isoforms are the most predominantly expressed in all tissues including skeletal and cardiac muscle and brain. Only brain expresses all isoforms. Expression occurs primarily in the internal granule cell layer of the olfactory bulb, cortex, thalamus, hippocampus and cerebellum. Low levels in the cerebellum and hindbrain. Expressed throughout the cortex, including the frontal and entorhinal cortex, dentate gyrus, and basolateral amygdala. Selectively expressed in B-cells but not in T-cells, and its expression increases as B-cells mature.6 Publications

Developmental stagei

Expressed in developing endothelial cells and smooth muscle cells, as well as in surrounding mesenchyme, during embryogenesis. Up-regulated during myogenesis.1 Publication

Gene expression databases

BgeeiQ8CFN5.
CleanExiMM_MEF2C.
ExpressionAtlasiQ8CFN5. baseline and differential.
GenevisibleiQ8CFN5. MM.

Interactioni

Subunit structurei

Forms a complex with class II HDACs in undifferentiating cells. On myogenic differentiation, HDACs are released into the cytoplasm allowing MEF2s to interact with other proteins for activation. Interacts with EP300 in differentiating cells; the interaction acetylates MEF2C leading to increased DNA binding and activation. Interacts with HDAC7 and CARM1 (By similarity). Interacts with HDAC4, HDAC7 AND HDAC9; the interaction WITH HDACs represses transcriptional activity. Interacts with LPIN1. Interacts with MYOCD.By similarity4 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
AclyQ91V923EBI-643822,EBI-644049

Protein-protein interaction databases

BioGridi201383. 10 interactions.
DIPiDIP-49524N.
IntActiQ8CFN5. 6 interactions.
MINTiMINT-1551742.
STRINGi10090.ENSMUSP00000132547.

Structurei

3D structure databases

ProteinModelPortaliQ8CFN5.
SMRiQ8CFN5. Positions 2-73.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini3 – 5755MADS-boxPROSITE-ProRule annotationAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni271 – 2788Beta domainBy similarity
Regioni368 – 39932Transcription repressorBy similarityAdd
BLAST

Compositional bias

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Compositional biasi4 – 3128Lys-rich (basic)Add
BLAST
Compositional biasi146 – 18338Ser-richAdd
BLAST

Domaini

The beta domain, missing in a number of isoforms, is required for enhancement of transcriptional activity.By similarity

Sequence similaritiesi

Belongs to the MEF2 family.Curated
Contains 1 MADS-box domain.PROSITE-ProRule annotation
Contains 1 Mef2-type DNA-binding domain.Curated

Phylogenomic databases

eggNOGiCOG5068.
GeneTreeiENSGT00390000011828.
HOGENOMiHOG000230620.
HOVERGENiHBG053944.
InParanoidiQ8CFN5.
OMAiCAVPPSN.
OrthoDBiEOG793B7D.
PhylomeDBiQ8CFN5.
TreeFamiTF314067.

Family and domain databases

InterProiIPR022102. HJURP_C.
IPR002100. TF_MADSbox.
[Graphical view]
PfamiPF12347. HJURP_C. 1 hit.
PF00319. SRF-TF. 1 hit.
[Graphical view]
PRINTSiPR00404. MADSDOMAIN.
SMARTiSM00432. MADS. 1 hit.
[Graphical view]
SUPFAMiSSF55455. SSF55455. 1 hit.
PROSITEiPS00350. MADS_BOX_1. 1 hit.
PS50066. MADS_BOX_2. 1 hit.
[Graphical view]

Sequences (5)i

Sequence statusi: Complete.

This entry describes 5 isoformsi produced by alternative splicing. AlignAdd to basket

Note: Additional isoforms seem to exist.

Isoform 1 (identifier: Q8CFN5-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MGRKKIQITR IMDERNRQVT FTKRKFGLMK KAYELSVLCD CEIALIIFNS
60 70 80 90 100
TNKLFQYAST DMDKVLLKYT EYNEPHESRT NSDIVETLRK KGLNGCDSPD
110 120 130 140 150
PDADDSVGHS PESEDKYRKI NEDIDLMISR QRLCAVPPPS FEMPVTIPVS
160 170 180 190 200
SHNSLVYSNP VSTLGNPNLL PLAHPSLQRN SMSPGVTHRP PSAGNTGGLM
210 220 230 240 250
GGDLTSGAGT SAGNGYGNPR NSPGLLVSPG NLNKNIQAKS PPPMNLGMNN
260 270 280 290 300
RKPDLRVLIP PGSKNTMPSV SEDVDLLLNQ RINNSQSAQS LATPVVSVAT
310 320 330 340 350
PTLPGQGMGG YPSAISTTYG TEYSLSSADL SSLSGFNTAS ALHLGSVTGW
360 370 380 390 400
QQQHLHNMPP SALSQLGACT STHLSQSSNL SLPSTQSLSI KSEPVSPPRD
410 420 430 440 450
RTTTPSRYPQ HTTRHEAGRS PVDSLSSCSS SYDGSDREDH RNEFHSPIGL
460 470
TRPSPDERES PSVKRMRLSE GWAT
Note: No experimental confirmation available.
Length:474
Mass (Da):51,278
Last modified:January 4, 2005 - v2
Checksum:iCEFC2DB21E89632A
GO
Isoform 2 (identifier: Q8CFN5-2) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     271-278: Missing.

Show »
Length:466
Mass (Da):50,393
Checksum:iF06A89C9ACD779AE
GO
Isoform 3 (identifier: Q8CFN5-3) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     368-399: Missing.

Show »
Length:442
Mass (Da):47,956
Checksum:i40EFBF02BF3E775C
GO
Isoform 4 (identifier: Q8CFN5-4) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     87-97: TLRKKGLNGCD → ALNKKENKGSE
     103-118: ADDSVGHSPESEDKYR → SSYALTPRTEEKYK
     123-134: DIDLMISRQRLC → EFDNMIKSHKIP
     271-278: Missing.
     368-399: Missing.

Show »
Length:432
Mass (Da):46,961
Checksum:iDCB2EBCE61A35215
GO
Isoform 5 (identifier: Q8CFN5-5) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     87-97: TLRKKGLNGCD → ALNKKENKGSE
     103-118: ADDSVGHSPESEDKYR → SSYALTPRTEEKYK
     123-134: DIDLMISRQRLC → EFDNMIKSHKIP

Show »
Length:472
Mass (Da):51,168
Checksum:i1B618AB137809260
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti141 – 1411F → L in AAH37731 (PubMed:15489334).Curated
Sequence conflicti211 – 2111S → P (PubMed:8506376).Curated
Sequence conflicti428 – 4281C → S (PubMed:8506376).Curated

Alternative sequence

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Alternative sequencei87 – 9711TLRKKGLNGCD → ALNKKENKGSE in isoform 4 and isoform 5. 2 PublicationsVSP_012501Add
BLAST
Alternative sequencei103 – 11816ADDSV…EDKYR → SSYALTPRTEEKYK in isoform 4 and isoform 5. 2 PublicationsVSP_012502Add
BLAST
Alternative sequencei123 – 13412DIDLM…RQRLC → EFDNMIKSHKIP in isoform 4 and isoform 5. 2 PublicationsVSP_012503Add
BLAST
Alternative sequencei271 – 2788Missing in isoform 2 and isoform 4. 2 PublicationsVSP_012504
Alternative sequencei368 – 39932Missing in isoform 3 and isoform 4. 2 PublicationsVSP_012505Add
BLAST

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AK009139 mRNA. Translation: BAB26099.1.
BC026841 mRNA. Translation: AAH26841.1.
BC037731 mRNA. Translation: AAH37731.1.
BC057650 mRNA. Translation: AAH57650.1.
CCDSiCCDS26664.1. [Q8CFN5-4]
CCDS49320.1. [Q8CFN5-2]
RefSeqiNP_079558.1. NM_025282.3. [Q8CFN5-4]
XP_006517183.1. XM_006517120.2. [Q8CFN5-1]
XP_006517184.1. XM_006517121.2. [Q8CFN5-1]
XP_006517185.1. XM_006517122.1. [Q8CFN5-1]
XP_006517186.1. XM_006517123.1. [Q8CFN5-1]
XP_006517187.1. XM_006517124.2. [Q8CFN5-1]
XP_006517189.1. XM_006517126.1. [Q8CFN5-5]
XP_006517192.1. XM_006517129.1. [Q8CFN5-3]
XP_006517195.1. XM_006517132.2. [Q8CFN5-4]
XP_011242794.1. XM_011244492.1. [Q8CFN5-1]
XP_011242795.1. XM_011244493.1. [Q8CFN5-5]
XP_011242796.1. XM_011244494.1. [Q8CFN5-3]
UniGeneiMm.24001.
Mm.451574.
Mm.487610.

Genome annotation databases

EnsembliENSMUST00000185052; ENSMUSP00000138826; ENSMUSG00000005583. [Q8CFN5-5]
ENSMUST00000197146; ENSMUSP00000143227; ENSMUSG00000005583. [Q8CFN5-3]
ENSMUST00000197681; ENSMUSP00000143420; ENSMUSG00000005583. [Q8CFN5-3]
ENSMUST00000198199; ENSMUSP00000143742; ENSMUSG00000005583. [Q8CFN5-4]
ENSMUST00000199019; ENSMUSP00000143401; ENSMUSG00000005583. [Q8CFN5-1]
ENSMUST00000199105; ENSMUSP00000143212; ENSMUSG00000005583. [Q8CFN5-1]
GeneIDi17260.
UCSCiuc007rie.2. mouse. [Q8CFN5-4]
uc007rih.2. mouse. [Q8CFN5-5]
uc007rii.3. mouse. [Q8CFN5-3]

Keywords - Coding sequence diversityi

Alternative splicing

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AK009139 mRNA. Translation: BAB26099.1.
BC026841 mRNA. Translation: AAH26841.1.
BC037731 mRNA. Translation: AAH37731.1.
BC057650 mRNA. Translation: AAH57650.1.
CCDSiCCDS26664.1. [Q8CFN5-4]
CCDS49320.1. [Q8CFN5-2]
RefSeqiNP_079558.1. NM_025282.3. [Q8CFN5-4]
XP_006517183.1. XM_006517120.2. [Q8CFN5-1]
XP_006517184.1. XM_006517121.2. [Q8CFN5-1]
XP_006517185.1. XM_006517122.1. [Q8CFN5-1]
XP_006517186.1. XM_006517123.1. [Q8CFN5-1]
XP_006517187.1. XM_006517124.2. [Q8CFN5-1]
XP_006517189.1. XM_006517126.1. [Q8CFN5-5]
XP_006517192.1. XM_006517129.1. [Q8CFN5-3]
XP_006517195.1. XM_006517132.2. [Q8CFN5-4]
XP_011242794.1. XM_011244492.1. [Q8CFN5-1]
XP_011242795.1. XM_011244493.1. [Q8CFN5-5]
XP_011242796.1. XM_011244494.1. [Q8CFN5-3]
UniGeneiMm.24001.
Mm.451574.
Mm.487610.

3D structure databases

ProteinModelPortaliQ8CFN5.
SMRiQ8CFN5. Positions 2-73.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi201383. 10 interactions.
DIPiDIP-49524N.
IntActiQ8CFN5. 6 interactions.
MINTiMINT-1551742.
STRINGi10090.ENSMUSP00000132547.

PTM databases

PhosphoSiteiQ8CFN5.

Proteomic databases

MaxQBiQ8CFN5.
PaxDbiQ8CFN5.
PRIDEiQ8CFN5.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENSMUST00000185052; ENSMUSP00000138826; ENSMUSG00000005583. [Q8CFN5-5]
ENSMUST00000197146; ENSMUSP00000143227; ENSMUSG00000005583. [Q8CFN5-3]
ENSMUST00000197681; ENSMUSP00000143420; ENSMUSG00000005583. [Q8CFN5-3]
ENSMUST00000198199; ENSMUSP00000143742; ENSMUSG00000005583. [Q8CFN5-4]
ENSMUST00000199019; ENSMUSP00000143401; ENSMUSG00000005583. [Q8CFN5-1]
ENSMUST00000199105; ENSMUSP00000143212; ENSMUSG00000005583. [Q8CFN5-1]
GeneIDi17260.
UCSCiuc007rie.2. mouse. [Q8CFN5-4]
uc007rih.2. mouse. [Q8CFN5-5]
uc007rii.3. mouse. [Q8CFN5-3]

Organism-specific databases

CTDi4208.
MGIiMGI:99458. Mef2c.

Phylogenomic databases

eggNOGiCOG5068.
GeneTreeiENSGT00390000011828.
HOGENOMiHOG000230620.
HOVERGENiHBG053944.
InParanoidiQ8CFN5.
OMAiCAVPPSN.
OrthoDBiEOG793B7D.
PhylomeDBiQ8CFN5.
TreeFamiTF314067.

Miscellaneous databases

NextBioi291752.
PROiQ8CFN5.
SOURCEiSearch...

Gene expression databases

BgeeiQ8CFN5.
CleanExiMM_MEF2C.
ExpressionAtlasiQ8CFN5. baseline and differential.
GenevisibleiQ8CFN5. MM.

Family and domain databases

InterProiIPR022102. HJURP_C.
IPR002100. TF_MADSbox.
[Graphical view]
PfamiPF12347. HJURP_C. 1 hit.
PF00319. SRF-TF. 1 hit.
[Graphical view]
PRINTSiPR00404. MADSDOMAIN.
SMARTiSM00432. MADS. 1 hit.
[Graphical view]
SUPFAMiSSF55455. SSF55455. 1 hit.
PROSITEiPS00350. MADS_BOX_1. 1 hit.
PS50066. MADS_BOX_2. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors."
    Martin J.F., Schwarz J.J., Olson E.N.
    Proc. Natl. Acad. Sci. U.S.A. 90:5282-5286(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), TISSUE SPECIFICITY.
  2. "The transcriptional landscape of the mammalian genome."
    Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J.
    , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
    Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 4).
    Strain: C57BL/6J.
    Tissue: Tongue.
  3. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 3 AND 5).
    Tissue: Eye.
  4. "The expression of MEF2 genes is implicated in CNS neuronal differentiation."
    Lin X., Shah S., Bulleit R.F.
    Brain Res. Mol. Brain Res. 42:307-316(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY.
  5. "Phosphorylation of the MADS-Box transcription factor MEF2C enhances its DNA binding activity."
    Molkentin J.D., Li L., Olson E.N.
    J. Biol. Chem. 271:17199-17204(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-59, MUTAGENESIS OF SER-59.
  6. "Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C."
    Lin Q., Schwarz J., Bucana C., Olson E.N.
    Science 276:1404-1407(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  7. "Requirement of the MADS-box transcription factor MEF2C for vascular development."
    Lin Q., Lu J., Yanagisawa H., Webb R., Lyons G.E., Richardson J.A., Olson E.N.
    Development 125:4565-4574(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DEVELOPMENTAL STAGE.
  8. "A dynamic role for HDAC7 in MEF2-mediated muscle differentiation."
    Dressel U., Bailey P.J., Wang S.-C.M., Downes M., Evans R.M., Muscat G.E.O.
    J. Biol. Chem. 276:17007-17013(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH HDAC7.
  9. "The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2."
    Chen S.L., Loffler K.A., Chen D., Stallcup M.R., Muscat G.E.
    J. Biol. Chem. 277:4324-4333(2002) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH CARM1.
  10. "Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity."
    Zhu B., Gulick T.
    Mol. Cell. Biol. 24:8264-8275(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY OF ISOFORMS.
  11. "Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain."
    Zhu B., Ramachandran B., Gulick T.
    J. Biol. Chem. 280:28749-28760(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: TISSUE SPECIFICITY OF ISOFORMS.
  12. "Coactivation of MEF2 by the SAP domain proteins myocardin and MASTR."
    Creemers E.E., Sutherland L.B., Oh J., Barbosa A.C., Olson E.N.
    Mol. Cell 23:83-96(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH MYOCD.
  13. "Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation."
    Wilker P.R., Kohyama M., Sandau M.M., Albring J.C., Nakagawa O., Schwarz J.J., Murphy K.M.
    Nat. Immunol. 9:603-612(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, TISSUE SPECIFICITY.
  14. "Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells."
    Angelelli C., Magli A., Ferrari D., Ganassi M., Matafora V., Parise F., Razzini G., Bachi A., Ferrari S., Molinari S.
    Nucleic Acids Res. 36:915-928(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: ACETYLATION AT LYS-4, DNA-BINDING, IDENTIFICATION BY MASS SPECTROMETRY, FUNCTION, MUTAGENESIS OF ARG-3 AND LYS-4.
  15. "MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function."
    Barbosa A.C., Kim M.S., Ertunc M., Adachi M., Nelson E.D., McAnally J., Richardson J.A., Kavalali E.T., Monteggia L.M., Bassel-Duby R., Olson E.N.
    Proc. Natl. Acad. Sci. U.S.A. 105:9391-9396(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, TISSUE SPECIFICITY.
  16. Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  17. Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  18. "Sumoylation regulates nuclear localization of lipin-1alpha in neuronal cells."
    Liu G.H., Gerace L.
    PLoS ONE 4:E7031-E7031(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH LIPN1.

Entry informationi

Entry nameiMEF2C_MOUSE
AccessioniPrimary (citable) accession number: Q8CFN5
Secondary accession number(s): Q8R0H1, Q9D7L0, Q9QW20
Entry historyi
Integrated into UniProtKB/Swiss-Prot: January 4, 2005
Last sequence update: January 4, 2005
Last modified: July 22, 2015
This is version 124 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into Uniref entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.