Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q8CBF3 (EPHB1_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 104. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Ephrin type-B receptor 1

EC=2.7.10.1
Gene names
Name:Ephb1
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length984 AA.
Sequence statusComplete.
Sequence processingThe displayed sequence is further processed into a mature form.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Cognate/functional ephrin ligands for this receptor include EFNB1, EFNB2 and EFNB3. During nervous system development, regulates retinal axon guidance redirecting ipsilaterally ventrotemporal retinal ganglion cells axons at the optic chiasm midline. This probably requires repulsive interaction with EFNB2. In the adult nervous system together with EFNB3, regulates chemotaxis, proliferation and polarity of the hippocampus neural progenitors. Beside its role in axon guidance plays also an important redundant role with other ephrin-B receptors in development and maturation of dendritic spines and synapse formation. May also regulate angiogenesis. More generally, may play a role in targeted cell migration and adhesion. Upon activation by EFNB1 and probably other ephrin-B ligands activates the MAPK/ERK and the JNK signaling cascades to regulate cell migration and adhesion respectively. Ref.8 Ref.9 Ref.10 Ref.11

Catalytic activity

ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate.

Subunit structure

Heterotetramer upon binding of the ligand. The heterotetramer is composed of an ephrin dimer and a receptor dimer. Oligomerization is probably required to induce biological responses By similarity. Interacts with EPHB6; transphosphorylates EPHB6 to form an active signaling complex By similarity. Interacts with PICK1. Interacts (through Tyr-594) with NCK1 (via SH2 domain); activates the JUN cascade to regulate cell adhesion. The ligand-activated form interacts (through Tyr-928) with GRB7 and GRB10 (via SH2 domains). The ligand-activated form interacts (residues within the catalytic domain) with GRB2 (via SH2 domain). Interacts with GRB2, SHC1 and SRC; activates the MAPK/ERK cascade to regulate cell migration. Interacts with CBL; regulates receptor degradation through ubiquitination. Interacts with ACP1. Ref.4 Ref.5 Ref.6 Ref.7 Ref.13

Subcellular location

Cell membrane; Single-pass type I membrane protein By similarity. Early endosome membrane By similarity. Cell projectiondendrite Ref.8.

Tissue specificity

Expressed in neural stem and progenitor cells in the dentate gyrus. Ref.10

Developmental stage

Expressed in growth cones of ventrotemporal (uncrossed) retinal ganglion cells that give rise to ipsilateral projections (at protein level). Ref.9 Ref.11

Post-translational modification

Phosphorylated. Autophosphorylation is stimulated by the ligand EFNB1. Required for interaction with SH2 domain-containing interactors, for activation of the MAPK/ERK and JUN signaling cascades and for ubiquitination by CBL By similarity.

Ubiquitinated; (EFNB1)ligand-induced poly- and/or multi-ubiquitination by CBL is regulated by SRC and leads to lysosomal degradation. Ref.13

Disruption phenotype

Mice development is apparently normal. However, they display a dramatic reduction of ipsilateral retinal projection. Mice do not develop neuropathic algesia and physical dependence to morphine. Ref.9 Ref.12

Sequence similarities

Belongs to the protein kinase superfamily. Tyr protein kinase family. Ephrin receptor subfamily.

Contains 1 Eph LBD (Eph ligand-binding) domain.

Contains 2 fibronectin type-III domains.

Contains 1 protein kinase domain.

Contains 1 SAM (sterile alpha motif) domain.

Ontologies

Keywords
   Biological processCell adhesion
Neurogenesis
   Cellular componentCell membrane
Cell projection
Endosome
Membrane
   Coding sequence diversityAlternative splicing
   DomainRepeat
Signal
Transmembrane
Transmembrane helix
   LigandATP-binding
Nucleotide-binding
   Molecular functionKinase
Receptor
Transferase
Tyrosine-protein kinase
   PTMGlycoprotein
Phosphoprotein
Ubl conjugation
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processangiogenesis

Inferred from sequence or structural similarity. Source: UniProtKB

axon guidance

Inferred from direct assay PubMed 11532925. Source: MGI

camera-type eye morphogenesis

Inferred from mutant phenotype Ref.9. Source: MGI

cell chemotaxis

Inferred from mutant phenotype Ref.10. Source: UniProtKB

cell-substrate adhesion

Inferred from sequence or structural similarity. Source: UniProtKB

central nervous system projection neuron axonogenesis

Inferred from direct assay Ref.9. Source: MGI

cranial nerve development

Inferred from mutant phenotype Ref.9. Source: MGI

dendritic spine development

Inferred from mutant phenotype Ref.8. Source: UniProtKB

dendritic spine morphogenesis

Inferred from mutant phenotype Ref.8. Source: UniProtKB

detection of temperature stimulus involved in sensory perception of pain

Inferred from mutant phenotype Ref.12. Source: UniProtKB

ephrin receptor signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

establishment of cell polarity

Inferred from mutant phenotype Ref.10. Source: UniProtKB

neural precursor cell proliferation

Inferred from mutant phenotype Ref.10. Source: UniProtKB

neurogenesis

Inferred from mutant phenotype Ref.10. Source: UniProtKB

optic nerve morphogenesis

Inferred from mutant phenotype Ref.9. Source: MGI

positive regulation of synapse assembly

Inferred from mutant phenotype Ref.8. Source: UniProtKB

protein autophosphorylation

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of ERK1 and ERK2 cascade

Inferred from sequence or structural similarity. Source: UniProtKB

regulation of JNK cascade

Inferred from sequence or structural similarity. Source: UniProtKB

retinal ganglion cell axon guidance

Inferred from direct assay Ref.9. Source: MGI

   Cellular_componentaxon

Inferred from direct assay PubMed 16701205. Source: MGI

cytoplasm

Inferred from direct assay PubMed 12093895. Source: MGI

dendrite

Inferred from electronic annotation. Source: UniProtKB-SubCell

early endosome membrane

Inferred from sequence or structural similarity. Source: UniProtKB

integral component of plasma membrane

Inferred from sequence or structural similarity. Source: UniProtKB

membrane

Inferred from direct assay PubMed 12093895. Source: MGI

membrane raft

Inferred from direct assay PubMed 15502157. Source: MGI

   Molecular_functionATP binding

Inferred from electronic annotation. Source: UniProtKB-KW

axon guidance receptor activity

Inferred from direct assay PubMed 11532925. Source: MGI

transmembrane-ephrin receptor activity

Inferred from sequence or structural similarity. Source: UniProtKB

Complete GO annotation...

Alternative products

This entry describes 2 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q8CBF3-1)

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q8CBF3-2)

The sequence of this isoform differs from the canonical sequence as follows:
     588-628: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Signal peptide1 – 1717 Potential
Chain18 – 984967Ephrin type-B receptor 1
PRO_0000260317

Regions

Topological domain18 – 540523Extracellular Potential
Transmembrane541 – 56323Helical; Potential
Topological domain564 – 984421Cytoplasmic Potential
Domain19 – 201183Eph LBD
Domain322 – 432111Fibronectin type-III 1
Domain433 – 52896Fibronectin type-III 2
Domain619 – 882264Protein kinase
Domain911 – 97565SAM
Nucleotide binding625 – 6339ATP By similarity
Motif982 – 9843PDZ-binding Potential
Compositional bias183 – 319137Cys-rich

Sites

Active site7441Proton acceptor By similarity
Binding site6511ATP By similarity

Amino acid modifications

Modified residue9281Phosphotyrosine; by autocatalysis By similarity
Glycosylation3341N-linked (GlcNAc...) Potential
Glycosylation4261N-linked (GlcNAc...) Potential
Glycosylation4801N-linked (GlcNAc...) Potential

Natural variations

Alternative sequence588 – 62841Missing in isoform 2.
VSP_021595

Experimental info

Sequence conflict721L → Q in BAE22386. Ref.1
Sequence conflict1871L → P in BAE22386. Ref.1
Sequence conflict1941K → I in AAH57301. Ref.3
Sequence conflict6411P → Q in BAC29348. Ref.1
Sequence conflict6781P → R in AAH57301. Ref.3

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 [UniParc].

Last modified March 1, 2003. Version 1.
Checksum: E967019C82AA400A

FASTA984109,881
        10         20         30         40         50         60 
MALDCLLLFL LASAVAAMEE TLMDTRTATA ELGWTANPAS GWEEVSGYDE NLNTIRTYQV 

        70         80         90        100        110        120 
CNVFEPNQNN WLLTTFINRR GAHRIYTEMR FTVRDCSSLP NVPGSCKETF NLYYYETDSV 

       130        140        150        160        170        180 
IATKKSAFWS EAPYLKVDTI AADESFSQVD FGGRLMKVNT EVRSFGPLTR NGFYLAFQDY 

       190        200        210        220        230        240 
GACMSLLSVR VFFKKCPSIV QNFAVFPETM TGAESTSLVI ARGTCIPNAE EVDVPIKLYC 

       250        260        270        280        290        300 
NGDGEWMVPI GRCTCKPGYE PENSVACKAC PAGTFKASQE AEGCSHCPSN SRSPSEASPI 

       310        320        330        340        350        360 
CTCRTGYYRA DFDPPEVACT SVPSGPRNVI SIVNETSIIL EWHPPRETGG RDDVTYNIIC 

       370        380        390        400        410        420 
KKCRADRRSC SRCDDNVEFV PRQLGLTECR VSISSLWAHT PYTFDIQAIN GVSSKSPFPP 

       430        440        450        460        470        480 
QHVSVNITTN QAAPSTVPIM HQVSATMRSI TLSWPQPEQP NGIILDYEIR YYEKEHNEFN 

       490        500        510        520        530        540 
SSMARSQTNT ARIDGLRPGM VYVVQVRART VAGYGKFSGK MCFQTLTDDD YKSELREQLP 

       550        560        570        580        590        600 
LIAGSAAAGV VFVVSLVAIS IVCSRKRAYS KEAAYSDKLQ HYSTGRGSPG MKIYIDPFTY 

       610        620        630        640        650        660 
EDPNEAVREF AKEIDVSFVK IEEVIGAGEF GEVYKGRLKL PGKREIYVAI KTLKAGYSEK 

       670        680        690        700        710        720 
QRRDFLSEAS IMGQFDHPNI IRLEGVVTKS RPVMIITEFM ENGALDSFLR QNDGQFTVIQ 

       730        740        750        760        770        780 
LVGMLRGIAA GMKYLSEMNY VHRDLAARNI LVNSNLVCKV SDFGLSRYLQ DDTSDPTYTS 

       790        800        810        820        830        840 
SLGGKIPVRW TAPEAIAYRK FTSASDVWSY GIVMWEVMSF GERPYWDMSN QDVINAIEQD 

       850        860        870        880        890        900 
YRLPPPMDCP AALHQLMLDC WQKDRNSRPR FAEIVNTLDK MIRNPASLKT VATITAVPSQ 

       910        920        930        940        950        960 
PLLDRSIPDF TAFTTVDDWL SAIKMVQYRD SFLTAGFTSL QLVTQMTSED LLRIGVTLAG 

       970        980 
HQKKILSSIH SMRVQMNQSP SVMA 

« Hide

Isoform 2 [UniParc].

Checksum: EF28BF1D7FE097C9
Show »

FASTA943105,294

References

« Hide 'large scale' references
[1]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 1 AND 2).
Strain: C57BL/6J.
Tissue: Cerebellum and Olfactory bulb.
[2]"Lineage-specific biology revealed by a finished genome assembly of the mouse."
Church D.M., Goodstadt L., Hillier L.W., Zody M.C., Goldstein S., She X., Bult C.J., Agarwala R., Cherry J.L., DiCuccio M., Hlavina W., Kapustin Y., Meric P., Maglott D., Birtle Z., Marques A.C., Graves T., Zhou S. expand/collapse author list , Teague B., Potamousis K., Churas C., Place M., Herschleb J., Runnheim R., Forrest D., Amos-Landgraf J., Schwartz D.C., Cheng Z., Lindblad-Toh K., Eichler E.E., Ponting C.P.
PLoS Biol. 7:E1000112-E1000112(2009) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
Strain: C57BL/6J.
[3]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
Strain: C57BL/6.
Tissue: Brain.
[4]"Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase."
Stein E., Huynh-Do U., Lane A.A., Cerretti D.P., Daniel T.O.
J. Biol. Chem. 273:1303-1308(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH NCK1.
Tissue: Kidney.
[5]"PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands."
Torres R., Firestein B.L., Dong H., Staudinger J., Olson E.N., Huganir R.L., Bredt D.S., Gale N.W., Yancopoulos G.D.
Neuron 21:1453-1463(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH PICK1.
[6]"EphB1 associates with Grb7 and regulates cell migration."
Han D.C., Shen T.L., Miao H., Wang B., Guan J.L.
J. Biol. Chem. 277:45655-45661(2002) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH GRB7.
[7]"EphB1 recruits c-Src and p52Shc to activate MAPK/ERK and promote chemotaxis."
Vindis C., Cerretti D.P., Daniel T.O., Huynh-Do U.
J. Cell Biol. 162:661-671(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH GRB2; SHC1 AND SRC.
[8]"Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus."
Henkemeyer M., Itkis O.S., Ngo M., Hickmott P.W., Ethell I.M.
J. Cell Biol. 163:1313-1326(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN DENDRITIC SPINE DEVELOPMENT, FUNCTION IN EXCITATORY SYNAPSE FORMATION, SUBCELLULAR LOCATION.
[9]"Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm."
Williams S.E., Mann F., Erskine L., Sakurai T., Wei S., Rossi D.J., Gale N.W., Holt C.E., Mason C.A., Henkemeyer M.
Neuron 39:919-935(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE, FUNCTION IN RETINAL GLANGLION CELL AXON GUIDANCE, DEVELOPMENTAL STAGE.
[10]"EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis."
Chumley M.J., Catchpole T., Silvany R.E., Kernie S.G., Henkemeyer M.
J. Neurosci. 27:13481-13490(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION IN NEUROGENESIS, IDENTIFICATION OF EFNB3 AS LIGAND, TISSUE SPECIFICITY.
[11]"Zic2 regulates retinal ganglion cell axon avoidance of ephrinB2 through inducing expression of the guidance receptor EphB1."
Lee R., Petros T.J., Mason C.A.
J. Neurosci. 28:5910-5919(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DEVELOPMENTAL STAGE.
[12]"Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice."
Han Y., Song X.S., Liu W.T., Henkemeyer M., Song X.J.
Mol. Pain 4:60-60(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: DISRUPTION PHENOTYPE.
[13]"Ligand binding induces Cbl-dependent EphB1 receptor degradation through the lysosomal pathway."
Fasen K., Cerretti D.P., Huynh-Do U.
Traffic 9:251-266(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: UBIQUITINATION BY CBL, INTERACTION WITH CBL.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
AK036148 mRNA. Translation: BAC29320.1.
AK036211 mRNA. Translation: BAC29348.1.
AK135018 mRNA. Translation: BAE22386.1.
CT025594 expand/collapse EMBL AC list , AC109247, AC132684, AC156635 Genomic DNA. Translation: CAM23741.1.
BC057301 mRNA. Translation: AAH57301.1.
RefSeqNP_001161768.1. NM_001168296.1.
NP_775623.3. NM_173447.3.
UniGeneMm.22897.

3D structure databases

ProteinModelPortalQ8CBF3.
SMRQ8CBF3. Positions 17-528, 595-898, 900-984.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid234781. 1 interaction.
IntActQ8CBF3. 1 interaction.
STRING10090.ENSMUSP00000035129.

PTM databases

PhosphoSiteQ8CBF3.

Proteomic databases

PaxDbQ8CBF3.
PRIDEQ8CBF3.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000035129; ENSMUSP00000035129; ENSMUSG00000032537. [Q8CBF3-1]
ENSMUST00000085169; ENSMUSP00000082261; ENSMUSG00000032537. [Q8CBF3-2]
GeneID270190.
KEGGmmu:270190.
UCSCuc009rfn.2. mouse. [Q8CBF3-1]
uc012gzg.1. mouse. [Q8CBF3-2]

Organism-specific databases

CTD2047.
MGIMGI:1096337. Ephb1.

Phylogenomic databases

eggNOGCOG0515.
GeneTreeENSGT00740000115081.
HOGENOMHOG000233856.
HOVERGENHBG062180.
InParanoidQ8CBF3.
KOK05110.
OMANSVACKA.
OrthoDBEOG7VTDM6.
PhylomeDBQ8CBF3.
TreeFamTF315608.

Gene expression databases

BgeeQ8CBF3.
CleanExMM_EPHB1.
GenevestigatorQ8CBF3.

Family and domain databases

Gene3D1.10.150.50. 1 hit.
2.60.120.260. 1 hit.
2.60.40.10. 2 hits.
InterProIPR027936. Eph_TM.
IPR001090. Ephrin_rcpt_lig-bd_dom.
IPR003961. Fibronectin_type3.
IPR008979. Galactose-bd-like.
IPR009030. Growth_fac_rcpt_N_dom.
IPR013783. Ig-like_fold.
IPR011009. Kinase-like_dom.
IPR000719. Prot_kinase_dom.
IPR017441. Protein_kinase_ATP_BS.
IPR001660. SAM.
IPR013761. SAM/pointed.
IPR021129. SAM_type1.
IPR001245. Ser-Thr/Tyr_kinase_cat_dom.
IPR008266. Tyr_kinase_AS.
IPR020635. Tyr_kinase_cat_dom.
IPR016257. Tyr_kinase_ephrin_rcpt.
IPR001426. Tyr_kinase_rcpt_V_CS.
[Graphical view]
PfamPF14575. EphA2_TM. 1 hit.
PF01404. Ephrin_lbd. 1 hit.
PF00041. fn3. 2 hits.
PF07714. Pkinase_Tyr. 1 hit.
PF00536. SAM_1. 1 hit.
[Graphical view]
PIRSFPIRSF000666. TyrPK_ephrin_receptor. 1 hit.
PRINTSPR00109. TYRKINASE.
SMARTSM00615. EPH_lbd. 1 hit.
SM00060. FN3. 2 hits.
SM00454. SAM. 1 hit.
SM00219. TyrKc. 1 hit.
[Graphical view]
SUPFAMSSF47769. SSF47769. 1 hit.
SSF49265. SSF49265. 1 hit.
SSF49785. SSF49785. 1 hit.
SSF56112. SSF56112. 1 hit.
SSF57184. SSF57184. 2 hits.
PROSITEPS01186. EGF_2. 1 hit.
PS51550. EPH_LBD. 1 hit.
PS50853. FN3. 2 hits.
PS00107. PROTEIN_KINASE_ATP. 1 hit.
PS50011. PROTEIN_KINASE_DOM. 1 hit.
PS00109. PROTEIN_KINASE_TYR. 1 hit.
PS00790. RECEPTOR_TYR_KIN_V_1. 1 hit.
PS00791. RECEPTOR_TYR_KIN_V_2. 1 hit.
PS50105. SAM_DOMAIN. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

NextBio393293.
PROQ8CBF3.
SOURCESearch...

Entry information

Entry nameEPHB1_MOUSE
AccessionPrimary (citable) accession number: Q8CBF3
Secondary accession number(s): B1B1C2 expand/collapse secondary AC list , Q3UY27, Q6PG23, Q8CBE2
Entry history
Integrated into UniProtKB/Swiss-Prot: November 28, 2006
Last sequence update: March 1, 2003
Last modified: April 16, 2014
This is version 104 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

Human and mouse protein kinases

Human and mouse protein kinases: classification and index

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot