Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.

Q8BUN5

- SMAD3_MOUSE

UniProt

Q8BUN5 - SMAD3_MOUSE

(max 400 entries)x

Your basket is currently empty.

Select item(s) and click on "Add to basket" to create your own collection here
(400 entries max)

Protein

Mothers against decapentaplegic homolog 3

Gene

Smad3

Organism
Mus musculus (Mouse)
Status
Reviewed - Annotation score: 5 out of 5- Experimental evidence at protein leveli

Functioni

Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator (By similarity).By similarity

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sitei40 – 401Required for trimerizationBy similarity
Sitei41 – 411Required for interaction with DNA and JUN and for functional cooperation with JUNBy similarity
Metal bindingi64 – 641ZincBy similarity
Metal bindingi109 – 1091ZincBy similarity
Metal bindingi121 – 1211ZincBy similarity
Metal bindingi126 – 1261ZincBy similarity

GO - Molecular functioni

  1. chromatin binding Source: MGI
  2. chromatin DNA binding Source: BHF-UCL
  3. collagen binding Source: MGI
  4. core promoter proximal region sequence-specific DNA binding Source: UniProtKB
  5. double-stranded DNA binding Source: MGI
  6. protein binding transcription factor activity Source: Ensembl
  7. sequence-specific DNA binding transcription factor activity Source: MGI
  8. transcription factor binding Source: UniProtKB
  9. transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity Source: Ensembl
  10. zinc ion binding Source: Ensembl

GO - Biological processi

  1. activation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway Source: Ensembl
  2. cell-cell junction organization Source: Ensembl
  3. cell cycle arrest Source: Ensembl
  4. developmental growth Source: MGI
  5. embryonic cranial skeleton morphogenesis Source: MGI
  6. embryonic foregut morphogenesis Source: MGI
  7. embryonic pattern specification Source: MGI
  8. endoderm development Source: MGI
  9. evasion or tolerance of host defenses by virus Source: Ensembl
  10. extrinsic apoptotic signaling pathway Source: Ensembl
  11. gastrulation Source: MGI
  12. heart looping Source: MGI
  13. immune response Source: Ensembl
  14. immune system development Source: MGI
  15. in utero embryonic development Source: MGI
  16. lens fiber cell differentiation Source: MGI
  17. liver development Source: MGI
  18. mesoderm formation Source: MGI
  19. negative regulation of apoptotic process Source: Ensembl
  20. negative regulation of cell growth Source: Ensembl
  21. negative regulation of inflammatory response Source: UniProtKB
  22. negative regulation of mitotic cell cycle Source: Ensembl
  23. negative regulation of osteoblast differentiation Source: MGI
  24. negative regulation of osteoblast proliferation Source: UniProtKB
  25. negative regulation of protein catabolic process Source: Ensembl
  26. negative regulation of protein phosphorylation Source: Ensembl
  27. negative regulation of transcription from RNA polymerase II promoter Source: MGI
  28. negative regulation of wound healing Source: UniProtKB
  29. nodal signaling pathway Source: Ensembl
  30. osteoblast development Source: MGI
  31. osteoblast differentiation Source: UniProtKB
  32. paraxial mesoderm morphogenesis Source: MGI
  33. pericardium development Source: MGI
  34. positive regulation of alkaline phosphatase activity Source: Ensembl
  35. positive regulation of bone mineralization Source: Ensembl
  36. positive regulation of canonical Wnt signaling pathway Source: Ensembl
  37. positive regulation of catenin import into nucleus Source: Ensembl
  38. positive regulation of cell migration Source: Ensembl
  39. positive regulation of chondrocyte differentiation Source: UniProtKB
  40. positive regulation of epithelial to mesenchymal transition Source: Ensembl
  41. positive regulation of focal adhesion assembly Source: Ensembl
  42. positive regulation of gene expression involved in extracellular matrix organization Source: Ensembl
  43. positive regulation of interleukin-1 beta production Source: Ensembl
  44. positive regulation of positive chemotaxis Source: Ensembl
  45. positive regulation of stress fiber assembly Source: Ensembl
  46. positive regulation of transcription, DNA-templated Source: MGI
  47. positive regulation of transcription factor import into nucleus Source: Ensembl
  48. positive regulation of transcription from RNA polymerase II promoter Source: MGI
  49. positive regulation of transforming growth factor beta3 production Source: Ensembl
  50. protein stabilization Source: Ensembl
  51. regulation of binding Source: MGI
  52. regulation of epithelial cell proliferation Source: MGI
  53. regulation of immune response Source: UniProtKB
  54. regulation of striated muscle tissue development Source: MGI
  55. regulation of transforming growth factor beta2 production Source: Ensembl
  56. regulation of transforming growth factor beta receptor signaling pathway Source: MGI
  57. response to hypoxia Source: Ensembl
  58. signal transduction involved in regulation of gene expression Source: Ensembl
  59. skeletal system development Source: MGI
  60. SMAD protein complex assembly Source: Ensembl
  61. SMAD protein signal transduction Source: MGI
  62. somitogenesis Source: MGI
  63. T cell activation Source: UniProtKB
  64. thyroid gland development Source: MGI
  65. transcription from RNA polymerase II promoter Source: ProtInc
  66. transdifferentiation Source: Ensembl
  67. transforming growth factor beta receptor signaling pathway Source: MGI
  68. transport Source: Ensembl
  69. ureteric bud development Source: UniProtKB
Complete GO annotation...

Keywords - Biological processi

Transcription, Transcription regulation

Keywords - Ligandi

Metal-binding, Zinc

Enzyme and pathway databases

ReactomeiREACT_202264. SMAD4 MH2 Domain Mutants in Cancer.
REACT_203510. TGF-beta receptor signaling activates SMADs.
REACT_203903. SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription.
REACT_215733. Downregulation of TGF-beta receptor signaling.
REACT_216258. Signaling by Activin.
REACT_216792. SMAD2/3 MH2 Domain Mutants in Cancer.
REACT_217958. SMAD2/3 Phosphorylation Motif Mutants in Cancer.
REACT_220566. Downregulation of SMAD2/3:SMAD4 transcriptional activity.
REACT_220645. Signaling by NODAL.
REACT_224802. TGFBR1 KD Mutants in Cancer.

Names & Taxonomyi

Protein namesi
Recommended name:
Mothers against decapentaplegic homolog 3
Short name:
MAD homolog 3
Short name:
Mad3
Short name:
Mothers against DPP homolog 3
Short name:
mMad3
Alternative name(s):
SMAD family member 3
Short name:
SMAD 3
Short name:
Smad3
Gene namesi
Name:Smad3
Synonyms:Madh3
OrganismiMus musculus (Mouse)
Taxonomic identifieri10090 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus
ProteomesiUP000000589: Chromosome 9

Organism-specific databases

MGIiMGI:1201674. Smad3.

Subcellular locationi

Cytoplasm. Nucleus
Note: Cytoplasmic and nuclear in the absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus when complexed with SMAD4. Through the action of the phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported out of the nucleus by interaction with RANBP1. Co-localizes with LEMD3 at the nucleus inner membrane. MAPK-mediated phosphorylation appears to have no effect on nuclear import. PDPK1 prevents its nuclear translocation in response to TGF-beta (By similarity).By similarity

GO - Cellular componenti

  1. cytoplasm Source: UniProtKB
  2. nuclear chromatin Source: Ensembl
  3. nuclear inner membrane Source: Ensembl
  4. nucleus Source: UniProtKB
  5. plasma membrane Source: MGI
  6. receptor complex Source: Ensembl
  7. SMAD2-SMAD3 protein complex Source: Ensembl
  8. SMAD protein complex Source: UniProtKB
  9. transcription factor complex Source: UniProtKB
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Nucleus

Pathology & Biotechi

Disruption phenotypei

SMAD3 null mice exhibit inhibition of proliferation of mammary gland epithelial cells. Fibrobasts are only partially growth inhibited. Defects in osteoblast differentiation are observed. Animals are osteopenic with less cortical and cancellous bone. Facture healing is accelerated. Decreased bone mineral density (BMD) reflects the inability of osteoblasts to balance osteoclast activity. Wound healing is accelerated to about two and a half times that of normal animals. Wound areas are significantly reduced with less quantities of granulation tissue. There is reduced local infiltration of moncytes and keratinocytes show altered patterns of growth and migration. Accelerated wound healing is observed on castration of null male mice, while null female mice exhibited delayed healing following ovariectomy.4 Publications

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Initiator methioninei1 – 11RemovedBy similarity
Chaini2 – 425424Mothers against decapentaplegic homolog 3PRO_0000090857Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Modified residuei2 – 21N-acetylserineBy similarity
Modified residuei8 – 81Phosphothreonine; by CDK2 and CDK4By similarity
Cross-linki33 – 33Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Cross-linki81 – 81Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin)By similarity
Modified residuei179 – 1791Phosphothreonine; by CDK2, CDK4 and MAPKBy similarity
Modified residuei204 – 2041Phosphoserine; by GSK3 and MAPKPROSITE-ProRule annotation
Modified residuei208 – 2081Phosphoserine; by MAPKPROSITE-ProRule annotation
Modified residuei213 – 2131Phosphoserine; by CDK2 and CDK4PROSITE-ProRule annotation
Modified residuei378 – 3781N6-acetyllysineBy similarity
Modified residuei416 – 4161PhosphoserinePROSITE-ProRule annotation
Modified residuei418 – 4181Phosphoserine; by CK1PROSITE-ProRule annotation
Modified residuei422 – 4221Phosphoserine; by TGFBR11 PublicationPROSITE-ProRule annotation
Modified residuei423 – 4231Phosphoserine; by TGFBR11 PublicationPROSITE-ProRule annotation
Modified residuei425 – 4251Phosphoserine; by TGFBR11 PublicationPROSITE-ProRule annotation

Post-translational modificationi

Phosphorylated on serine and threonine residues. Enhanced phosphorylation in the linker region on Thr-179, Ser-204 and Ser-208 on EGF and TGF-beta treatment. Ser-208 is the main site of MAPK-mediated phosphorylation. CDK-mediated phosphorylation occurs in a cell-cycle dependent manner and inhibits both the transcriptional activity and antiproliferative functions of SMAD3. This phosphorylation is inhibited by flavopiridol. Maximum phosphorylation at the G1/S junction. Also phosphorylated on serine residues in the C-terminal SXS motif by TGFBR1 and ACVR1. TGFBR1-mediated phosphorylation at these C-terminal sites is required for interaction with SMAD4, nuclear location and transactivational activity, and appears to be a prerequisite for the TGF-beta mediated phosphorylation in the linker region. Dephosphorylated in the C-terminal SXS motif by PPM1A. This dephosphorylation disrupts the interaction with SMAD4, promotes nuclear export and terminates TGF-beta-mediated signaling. Phosphorylation at Ser-418 by CSNK1G2/CK1 promotes ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses (By similarity). Phosphorylated by PDPK1 (By similarity).By similarity
Acetylation in the nucleus by EP300 in the MH2 domain regulates positively its transcriptional activity and is enhanced by TGF-beta.By similarity
Ubiquitinated. Monoubiquitinated, leading to prevent DNA-binding. Deubiquitination by USP15 alleviates inhibition and promotes activation of TGF-beta target genes (By similarity).By similarity
Poly-ADP-ribosylated by PARP1 and PARP2. ADP-ribosylation negatively regulates SMAD3 transcriptional responses during the course of TGF-beta signaling.By similarity

Keywords - PTMi

Acetylation, ADP-ribosylation, Isopeptide bond, Phosphoprotein, Ubl conjugation

Proteomic databases

MaxQBiQ8BUN5.
PaxDbiQ8BUN5.
PRIDEiQ8BUN5.

PTM databases

PhosphoSiteiQ8BUN5.

Expressioni

Tissue specificityi

Highly expressed in the brain and ovary. Detected in the pyramidal cells of the hippocampus, granule cells of the dentate gyrus, granular cells of the cerebral cortex and the granulosa cells of the ovary.1 Publication

Gene expression databases

BgeeiQ8BUN5.
CleanExiMM_SMAD3.
ExpressionAtlasiQ8BUN5. baseline and differential.
GenevestigatoriQ8BUN5.

Interactioni

Subunit structurei

Monomer; in the absence of TGF-beta. Homooligomer; in the presence of TGF-beta. Heterotrimer; forms a heterotrimer in the presence of TGF-beta consisting of two molecules of C-terminally phosphorylated SMAD2 or SMAD3 and one of SMAD4 to form the transcriptionally active SMAD2/SMAD3-SMAD4 complex. Interacts with TGFBR1. Interacts (via MH2 domain) with CITED2 (via C-terminus). Interacts (via the MH2 domain) with ZFYVE9. Interacts with HDAC1, VDR, TGIF and TGIF2, RUNX3, CREBBP, SKOR1, SKOR2, SNON, ATF2, SMURF2 and SNW1. Interacts with DACH1; the interaction inhibits the TGF-beta signaling. Part of a complex consisting of AIP1, ACVR2A, ACVR1B and SMAD3. Forms a complex with SMAD2 and TRIM33 upon addition of TGF-beta. Found in a complex with SMAD3, RAN and XPO4. Interacts in the complex directly with XPO4. Interacts (via the MH2 domain) with LEMD3; the interaction represses SMAD3 transcriptional activity through preventing the formation of the heteromeric complex with SMAD4 and translocation to the nucleus. Interacts with RBPMS. Interacts (via MH2 domain) with MECOM. Interacts with WWTR1 (via its coiled-coil domain). Interacts (via the linker region) with EP300 (C-terminal); the interaction promotes SMAD3 acetylation and is enhanced by TGF-beta phosphorylation in the C-terminal of SMAD3. This interaction can be blocked by competitive binding of adenovirus oncoprotein E1A to the same C-terminal site on EP300, which then results in partially inhibited SMAD3/SMAD4 transcriptional activity. Interacts with SKI; the interaction represses SMAD3 transcriptional activity. Component of the multimeric complex SMAD3/SMAD4/JUN/FOS which forms at the AP1 promoter site; required for syngernistic transcriptional activity in response to TGF-beta. Interacts (via an N-terminal domain) with JUN (via its basic DNA binding and leucine zipper domains); this interaction is essential for DNA binding and cooperative transcriptional activity in response to TGF-beta. Interacts with PPM1A; the interaction dephosphorylates SMAD3 in the C-terminal SXS motif leading to disruption of the SMAD2/3-SMAD4 complex, nuclear export and termination of TGF-beta signaling. Interacts (dephosphorylated form via the MH1 and MH2 domains) with RANBP3 (via its C-terminal R domain); the interaction results in the export of dephosphorylated SMAD3 out of the nucleus and termination of the TGF-beta signaling. Interacts with AIP1, TGFB1I1, TTRAP, FOXL2, PRDM16, HGS and WWP1. Interacts with NEDD4L; the interaction requires TGF-beta stimulation. Interacts with PML. Interacts with MEN1. Interaction with CSNK1G2. Interacts with PDPK1 (via PH domain). Interacts with DAB2; the interactions are enhanced upon TGF-beta stimulation. Interacts with USP15. Interacts with PPP5C; the interaction decreases SMAD3 phosphorylation and protein levels. Interacts with LDLRAD4 (via the SMAD interaction motif). Interacts with PMEPA1.10 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
Axin1O356252EBI-2337983,EBI-2365912
Pou5f1P2026313EBI-2337983,EBI-1606219
Smad4P974715EBI-2337983,EBI-5259270

Protein-protein interaction databases

BioGridi201276. 34 interactions.
DIPiDIP-29717N.
IntActiQ8BUN5. 12 interactions.
MINTiMINT-262056.

Structurei

3D structure databases

ProteinModelPortaliQ8BUN5.
SMRiQ8BUN5. Positions 7-132, 228-425.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini10 – 136127MH1PROSITE-ProRule annotationAdd
BLAST
Domaini232 – 425194MH2PROSITE-ProRule annotationAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni137 – 23195LinkerAdd
BLAST
Regioni271 – 32454Sufficient for interaction with XPO4By similarityAdd
BLAST

Domaini

The MH1 domain is required for DNA binding (By similarity). Also binds zinc ions which are necessary for the DNA binding.By similarity
The MH2 domain is required for both homomeric and heteromeric interactions and for transcriptional regulation. Sufficient for nuclear import (By similarity).By similarity
The linker region is required for the TGFbeta-mediated transcriptional activity and acts synergistically with the MH2 domain.By similarity

Sequence similaritiesi

Belongs to the dwarfin/SMAD family.Curated
Contains 1 MH1 (MAD homology 1) domain.PROSITE-ProRule annotation
Contains 1 MH2 (MAD homology 2) domain.PROSITE-ProRule annotation

Phylogenomic databases

eggNOGiNOG320700.
GeneTreeiENSGT00760000119091.
HOVERGENiHBG053353.
InParanoidiQ8BUN5.
KOiK04500.
OMAiAVELCEY.
OrthoDBiEOG7W1540.
PhylomeDBiQ8BUN5.
TreeFamiTF314923.

Family and domain databases

Gene3Di2.60.200.10. 1 hit.
3.90.520.10. 1 hit.
InterProiIPR013790. Dwarfin.
IPR003619. MAD_homology1_Dwarfin-type.
IPR013019. MAD_homology_MH1.
IPR017855. SMAD_dom-like.
IPR001132. SMAD_dom_Dwarfin-type.
IPR008984. SMAD_FHA_domain.
[Graphical view]
PANTHERiPTHR13703. PTHR13703. 1 hit.
PfamiPF03165. MH1. 1 hit.
PF03166. MH2. 1 hit.
[Graphical view]
SMARTiSM00523. DWA. 1 hit.
SM00524. DWB. 1 hit.
[Graphical view]
SUPFAMiSSF49879. SSF49879. 1 hit.
SSF56366. SSF56366. 1 hit.
PROSITEiPS51075. MH1. 1 hit.
PS51076. MH2. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Sequence processingi: The displayed sequence is further processed into a mature form.

Q8BUN5-1 [UniParc]FASTAAdd to Basket

« Hide

        10         20         30         40         50
MSSILPFTPP IVKRLLGWKK GEQNGQEEKW CEKAVKSLVK KLKKTGQLDE
60 70 80 90 100
LEKAITTQNV NTKCITIPRS LDGRLQVSHR KGLPHVIYCR LWRWPDLHSH
110 120 130 140 150
HELRAMELCE FAFNMKKDEV CVNPYHYQRV ETPVLPPVLV PRHTEIPAEF
160 170 180 190 200
PPLDDYSHSI PENTNFPAGI EPQSNIPETP PPGYLSEDGE TSDHQMNHSM
210 220 230 240 250
DAGSPNLSPN PMSPAHNNLD LQPVTYCEPA FWCSISYYEL NQRVGETFHA
260 270 280 290 300
SQPSMTVDGF TDPSNSERFC LGLLSNVNRN AAVELTRRHI GRGVRLYYIG
310 320 330 340 350
GEVFAECLSD SAIFVQSPNC NQRYGWHPAT VCKIPPGCNL KIFNNQEFAA
360 370 380 390 400
LLAQSVNQGF EAVYQLTRMC TIRMSFVKGW GAEYRRQTVT STPCWIELHL
410 420
NGPLQWLDKV LTQMGSPSIR CSSVS
Length:425
Mass (Da):48,081
Last modified:July 5, 2004 - v2
Checksum:i46DF5E8B371321AC
GO

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti26 – 261Q → E in BAC38789. (PubMed:16141072)Curated
Sequence conflicti269 – 2691F → L in AAB81755. 1 PublicationCurated
Sequence conflicti408 – 4081D → V in BAC33398. (PubMed:16141072)Curated

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
AB008192 mRNA. Translation: BAA76956.1.
AF016189 mRNA. Translation: AAB81755.1.
AK048626 mRNA. Translation: BAC33398.1.
AK083158 mRNA. Translation: BAC38789.1.
BC066850 mRNA. Translation: AAH66850.1.
CCDSiCCDS23272.1.
RefSeqiNP_058049.3. NM_016769.4.
UniGeneiMm.7320.

Genome annotation databases

EnsembliENSMUST00000034973; ENSMUSP00000034973; ENSMUSG00000032402.
GeneIDi17127.
KEGGimmu:17127.
UCSCiuc009qbi.1. mouse.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBL
GenBank
DDBJ
Links Updated
AB008192 mRNA. Translation: BAA76956.1 .
AF016189 mRNA. Translation: AAB81755.1 .
AK048626 mRNA. Translation: BAC33398.1 .
AK083158 mRNA. Translation: BAC38789.1 .
BC066850 mRNA. Translation: AAH66850.1 .
CCDSi CCDS23272.1.
RefSeqi NP_058049.3. NM_016769.4.
UniGenei Mm.7320.

3D structure databases

ProteinModelPortali Q8BUN5.
SMRi Q8BUN5. Positions 7-132, 228-425.
ModBasei Search...
MobiDBi Search...

Protein-protein interaction databases

BioGridi 201276. 34 interactions.
DIPi DIP-29717N.
IntActi Q8BUN5. 12 interactions.
MINTi MINT-262056.

Chemistry

BindingDBi Q8BUN5.

PTM databases

PhosphoSitei Q8BUN5.

Proteomic databases

MaxQBi Q8BUN5.
PaxDbi Q8BUN5.
PRIDEi Q8BUN5.

Protocols and materials databases

Structural Biology Knowledgebase Search...

Genome annotation databases

Ensembli ENSMUST00000034973 ; ENSMUSP00000034973 ; ENSMUSG00000032402 .
GeneIDi 17127.
KEGGi mmu:17127.
UCSCi uc009qbi.1. mouse.

Organism-specific databases

CTDi 4088.
MGIi MGI:1201674. Smad3.

Phylogenomic databases

eggNOGi NOG320700.
GeneTreei ENSGT00760000119091.
HOVERGENi HBG053353.
InParanoidi Q8BUN5.
KOi K04500.
OMAi AVELCEY.
OrthoDBi EOG7W1540.
PhylomeDBi Q8BUN5.
TreeFami TF314923.

Enzyme and pathway databases

Reactomei REACT_202264. SMAD4 MH2 Domain Mutants in Cancer.
REACT_203510. TGF-beta receptor signaling activates SMADs.
REACT_203903. SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription.
REACT_215733. Downregulation of TGF-beta receptor signaling.
REACT_216258. Signaling by Activin.
REACT_216792. SMAD2/3 MH2 Domain Mutants in Cancer.
REACT_217958. SMAD2/3 Phosphorylation Motif Mutants in Cancer.
REACT_220566. Downregulation of SMAD2/3:SMAD4 transcriptional activity.
REACT_220645. Signaling by NODAL.
REACT_224802. TGFBR1 KD Mutants in Cancer.

Miscellaneous databases

NextBioi 16026.
PROi Q8BUN5.
SOURCEi Search...

Gene expression databases

Bgeei Q8BUN5.
CleanExi MM_SMAD3.
ExpressionAtlasi Q8BUN5. baseline and differential.
Genevestigatori Q8BUN5.

Family and domain databases

Gene3Di 2.60.200.10. 1 hit.
3.90.520.10. 1 hit.
InterProi IPR013790. Dwarfin.
IPR003619. MAD_homology1_Dwarfin-type.
IPR013019. MAD_homology_MH1.
IPR017855. SMAD_dom-like.
IPR001132. SMAD_dom_Dwarfin-type.
IPR008984. SMAD_FHA_domain.
[Graphical view ]
PANTHERi PTHR13703. PTHR13703. 1 hit.
Pfami PF03165. MH1. 1 hit.
PF03166. MH2. 1 hit.
[Graphical view ]
SMARTi SM00523. DWA. 1 hit.
SM00524. DWB. 1 hit.
[Graphical view ]
SUPFAMi SSF49879. SSF49879. 1 hit.
SSF56366. SSF56366. 1 hit.
PROSITEi PS51075. MH1. 1 hit.
PS51076. MH2. 1 hit.
[Graphical view ]
ProtoNeti Search...

Publicationsi

« Hide 'large scale' publications
  1. Cited for: NUCLEOTIDE SEQUENCE [MRNA], TISSUE SPECIFICITY.
    Tissue: Brain.
  2. Yang X., Xu X., Shen S., Deng C.
    Submitted (JUL-1997) to the EMBL/GenBank/DDBJ databases
    Cited for: NUCLEOTIDE SEQUENCE [MRNA].
    Strain: C57BL/6.
  3. "The transcriptional landscape of the mammalian genome."
    Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J.
    , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
    Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: C57BL/6J.
    Tissue: Head and Hippocampus.
  4. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: C57BL/6J.
    Tissue: Embryo.
  5. "Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells."
    Liu X., Sun Y., Constantinescu S.N., Karam E., Weinberg R.A., Lodish H.F.
    Proc. Natl. Acad. Sci. U.S.A. 94:10669-10674(1997) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION AT SER-422; SER-423 AND SER-425.
  6. "Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response."
    Ashcroft G.S., Yang X., Glick A.B., Weinstein M., Letterio J.L., Mizel D.E., Anzano M., Greenwell-Wild T., Wahl S.M., Deng C., Roberts A.B.
    Nat. Cell Biol. 1:260-266(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISRUPTION PHENOTYPE, FUNCTION.
  7. "Identification and characterization of a PDZ protein that interacts with activin types II receptors."
    Shoji H., Tsuchida K., Kishi H., Yamakawa N., Matsuzaki T., Liu Z., Nakamura T., Sugino H.
    J. Biol. Chem. 275:5485-5492(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH AIP1, IDENTIFICATION IN A COMPLEX WITH AIP1; ACVR2A AND ACVR1B.
  8. "Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA."
    Miura S., Takeshita T., Asao H., Kimura Y., Murata K., Sasaki Y., Hanai J., Beppu H., Tsukazaki T., Wrana J.L., Miyazono K., Sugamura K.
    Mol. Cell. Biol. 20:9346-9355(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH HGS.
  9. "The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis."
    Borton A.J., Frederick J.P., Datto M.B., Wang X.F., Weinstein R.S.
    J. Bone Miner. Res. 16:1754-1764(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISRUPTION PHENOTYPE, FUNCTION.
  10. "Role of Smad3 in the hormonal modulation of in vivo wound healing responses."
    Ashcroft G.S., Mills S.J., Flanders K.C., Lyakh L.A., Anzano M.A., Gilliver S.C., Roberts A.B.
    Wound Repair Regen. 11:468-473(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISRUPTION PHENOTYPE, FUNCTION.
  11. "A LIM protein, Hic-5, functions as a potential coactivator for Sp1."
    Shibanuma M., Kim-Kaneyama J.-R., Sato S., Nose K.
    J. Cell. Biochem. 91:633-645(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH TGFB1I1.
  12. "Cytoplasmic PML function in TGF-beta signalling."
    Lin H.K., Bergmann S., Pandolfi P.P.
    Nature 431:205-211(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, SUBCELLULAR LOCATION, PHOSPHORYLATION, INTERACTION WITH PML AND ZFYVE9/SARA.
  13. "Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1)."
    Komuro A., Imamura T., Saitoh M., Yoshida Y., Yamori T., Miyazono K., Miyazawa K.
    Oncogene 23:6914-6923(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH WWP1.
  14. "NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor."
    Kuratomi G., Komuro A., Goto K., Shinozaki M., Miyazawa K., Miyazono K., Imamura T.
    Biochem. J. 386:461-470(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH NEDD4L.
  15. "PRDM16/MEL1: a novel Smad binding protein expressed in murine embryonic orofacial tissue."
    Warner D.R., Horn K.H., Mudd L., Webb C.L., Greene R.M., Pisano M.M.
    Biochim. Biophys. Acta 1773:814-820(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PRDM16.
  16. "Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination."
    Esguerra C.V., Nelles L., Vermeire L., Ibrahimi A., Crawford A.D., Derua R., Janssens E., Waelkens E., Carmeliet P., Collen D., Huylebroeck D.
    Development 134:4381-4393(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH TTRAP.
  17. "FoxL2 and Smad3 coordinately regulate follistatin gene transcription."
    Blount A.L., Schmidt K., Justice N.J., Vale W.W., Fischer W.H., Bilezikjian L.M.
    J. Biol. Chem. 284:7631-7645(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH FOXL2.
  18. "Loss of Smad3 gives rise to poor soft callus formation and accelerates early fracture healing."
    Kawakatsu M., Kanno S., Gui T., Gai Z., Itoh S., Tanishima H., Oikawa K., Muragaki Y.
    Exp. Mol. Pathol. 90:107-115(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: DISRUPTION PHENOTYPE, FUNCTION.
  19. "Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-? pathway."
    Bruce D.L., Macartney T., Yong W., Shou W., Sapkota G.P.
    Cell. Signal. 24:1999-2006(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PPP5C, SUBCELLULAR LOCATION.

Entry informationi

Entry nameiSMAD3_MOUSE
AccessioniPrimary (citable) accession number: Q8BUN5
Secondary accession number(s): O09064
, O09144, O14510, O35273, Q8BX84, Q92940, Q93002, Q9GKR4
Entry historyi
Integrated into UniProtKB/Swiss-Prot: July 5, 2004
Last sequence update: July 5, 2004
Last modified: October 29, 2014
This is version 123 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. MGD cross-references
    Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot
  2. SIMILARITY comments
    Index of protein domains and families

External Data

Dasty 3