Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q61290 (CAC1E_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified April 16, 2014. Version 128. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (2) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Voltage-dependent R-type calcium channel subunit alpha-1E
Alternative name(s):
Brain calcium channel II
Short name=BII
Calcium channel, L type, alpha-1 polypeptide, isoform 6
Voltage-gated calcium channel subunit alpha Cav2.3
Gene names
Name:Cacna1e
Synonyms:Cach6, Cacnl1a6, Cchra1
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length2272 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1Egives rise to R-type calcium currents. R-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by nickel, and partially by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), omega-conotoxin-GVIA (omega-CTx-GVIA), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1E subunit could be involved in the modulation of firing patterns of neurons which is important for information processing.

Subunit structure

Interacts with EFHC1. Voltage-dependent calcium channels are multisubunit complexes, consisting of alpha-1, alpha-2, beta and delta subunits in a 1:1:1:1 ratio. The channel activity is directed by the pore-forming and voltage-sensitive alpha-1 subunit. In many cases, this subunit is sufficient to generate voltage-sensitive calcium channel activity. The auxiliary subunits beta and alpha-2/delta linked by a disulfide bridge regulate the channel activity.

Subcellular location

Membrane; Multi-pass membrane protein.

Tissue specificity

Expressed in neuronal tissues, retina, spleen, and pancreatic islet cells.

Domain

Each of the four internal repeats contains five hydrophobic transmembrane segments (S1, S2, S3, S5, S6) and one positively charged transmembrane segment (S4). S4 segments probably represent the voltage-sensor and are characterized by a series of positively charged amino acids at every third position.

Sequence similarities

Belongs to the calcium channel alpha-1 subunit (TC 1.A.1.11) family. CACNA1E subfamily. [View classification]

Contains 1 EF-hand domain.

Ontologies

Keywords
   Biological processCalcium transport
Ion transport
Transport
   Cellular componentMembrane
   DomainRepeat
Transmembrane
Transmembrane helix
   LigandCalcium
Metal-binding
   Molecular functionCalcium channel
Ion channel
Voltage-gated channel
   PTMDisulfide bond
Glycoprotein
Phosphoprotein
   Technical termComplete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processbehavioral fear response

Inferred from mutant phenotype PubMed 11854466. Source: MGI

behavioral response to pain

Inferred from mutant phenotype PubMed 10801976. Source: MGI

calcium ion transmembrane transport

Inferred from mutant phenotype PubMed 11854466PubMed 11959138PubMed 12074836PubMed 14976402PubMed 15630454PubMed 17369816. Source: MGI

calcium ion transport

Inferred from mutant phenotype PubMed 12827191. Source: MGI

fear response

Inferred from mutant phenotype PubMed 10801976. Source: MGI

glucose homeostasis

Inferred from mutant phenotype PubMed 11735114PubMed 11923483. Source: MGI

locomotory behavior

Inferred from mutant phenotype PubMed 10801976. Source: MGI

neurological system process

Inferred from mutant phenotype PubMed 17376845. Source: MGI

regulation of heart rate

Inferred from mutant phenotype PubMed 14976402. Source: MGI

regulation of insulin secretion involved in cellular response to glucose stimulus

Inferred from mutant phenotype PubMed 11923483PubMed 15630454. Source: MGI

regulation of somatostatin secretion

Inferred from mutant phenotype PubMed 17369816. Source: MGI

response to pain

Inferred from mutant phenotype PubMed 12074836. Source: MGI

sensory perception of pain

Inferred from mutant phenotype PubMed 19726083. Source: MGI

sperm motility

Inferred from mutant phenotype PubMed 11959138. Source: MGI

transmission of nerve impulse

Inferred from mutant phenotype PubMed 19193890. Source: MGI

visual learning

Inferred from mutant phenotype PubMed 11263998. Source: MGI

   Cellular_componentvoltage-gated calcium channel complex

Traceable author statement PubMed 11296258. Source: MGI

   Molecular_functioncalcium ion binding

Inferred from electronic annotation. Source: InterPro

protein N-terminus binding

Inferred from physical interaction PubMed 15258581. Source: UniProtKB

voltage-gated calcium channel activity

Inferred from mutant phenotype PubMed 11102459PubMed 11854466PubMed 11959138PubMed 12074836PubMed 12827191PubMed 14976402PubMed 15630454PubMed 17369816. Source: MGI

Complete GO annotation...

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 22722272Voltage-dependent R-type calcium channel subunit alpha-1E
PRO_0000053939

Regions

Topological domain1 – 9090Cytoplasmic Potential
Transmembrane91 – 10919Helical; Name=S1 of repeat I; Potential
Topological domain110 – 12819Extracellular Potential
Transmembrane129 – 14719Helical; Name=S2 of repeat I; Potential
Topological domain148 – 15912Cytoplasmic Potential
Transmembrane160 – 17415Helical; Name=S3 of repeat I; Potential
Topological domain175 – 18612Extracellular Potential
Transmembrane187 – 20620Helical; Name=S4 of repeat I; Potential
Topological domain207 – 22418Cytoplasmic Potential
Transmembrane225 – 24521Helical; Name=S5 of repeat I; Potential
Topological domain246 – 32782Extracellular Potential
Transmembrane328 – 35124Helical; Name=S6 of repeat I; Potential
Topological domain352 – 477126Cytoplasmic Potential
Transmembrane478 – 49720Helical; Name=S1 of repeat II; Potential
Topological domain498 – 51013Extracellular Potential
Transmembrane511 – 53020Helical; Name=S2 of repeat II; Potential
Topological domain531 – 5399Cytoplasmic Potential
Transmembrane540 – 55819Helical; Name=S3 of repeat II; Potential
Topological domain559 – 56810Extracellular Potential
Transmembrane569 – 58719Helical; Name=S4 of repeat II; Potential
Topological domain588 – 60619Cytoplasmic Potential
Transmembrane607 – 62620Helical; Name=S5 of repeat II; Potential
Topological domain627 – 67953Extracellular Potential
Transmembrane680 – 70425Helical; Name=S6 of repeat II; Potential
Topological domain705 – 1150446Cytoplasmic Potential
Transmembrane1151 – 116717Helical; Name=S1 of repeat III; Potential
Topological domain1168 – 119124Extracellular Potential
Transmembrane1192 – 121120Helical; Name=S2 of repeat III; Potential
Topological domain1212 – 12198Cytoplasmic Potential
Transmembrane1220 – 124223Helical; Name=S3 of repeat III; Potential
Topological domain1243 – 125614Extracellular Potential
Transmembrane1257 – 127418Helical; Name=S4 of repeat III; Potential
Topological domain1275 – 129319Cytoplasmic Potential
Transmembrane1294 – 131320Helical; Name=S5 of repeat III; Potential
Topological domain1314 – 140087Extracellular Potential
Transmembrane1401 – 142424Helical; Name=S6 of repeat III; Potential
Topological domain1425 – 148157Cytoplasmic Potential
Transmembrane1482 – 150019Helical; Name=S1 of repeat IV; Potential
Topological domain1501 – 151515Extracellular Potential
Transmembrane1516 – 153520Helical; Name=S2 of repeat IV; Potential
Topological domain1536 – 15438Cytoplasmic Potential
Transmembrane1544 – 156219Helical; Name=S3 of repeat IV; Potential
Topological domain1563 – 157311Extracellular Potential
Transmembrane1574 – 159219Helical; Name=S4 of repeat IV; Potential
Topological domain1593 – 161119Cytoplasmic Potential
Transmembrane1612 – 163120Helical; Name=S5 of repeat IV; Potential
Topological domain1632 – 170069Extracellular Potential
Transmembrane1701 – 172626Helical; Name=S6 of repeat IV; Potential
Topological domain1727 – 2272546Cytoplasmic Potential
Repeat77 – 355279I
Repeat463 – 707245II
Repeat1143 – 1429287III
Repeat1466 – 1729264IV
Domain1742 – 177736EF-hand
Calcium binding427 – 43812 By similarity
Calcium binding1755 – 176612 By similarity
Region375 – 39218Binding to the beta subunit By similarity
Compositional bias717 – 7226Poly-Glu
Compositional bias751 – 7544Poly-Arg
Compositional bias770 – 7734Poly-Arg
Compositional bias1108 – 11125Poly-Glu
Compositional bias1115 – 11184Poly-Lys
Compositional bias1231 – 12344Poly-Val
Compositional bias2244 – 22474Poly-Arg

Sites

Site3101Calcium ion selectivity and permeability By similarity
Site6581Calcium ion selectivity and permeability By similarity
Site13751Calcium ion selectivity and permeability By similarity
Site16661Calcium ion selectivity and permeability By similarity

Amino acid modifications

Modified residue17371Phosphoserine; by PKA Potential
Glycosylation2551N-linked (GlcNAc...) Potential
Glycosylation15691N-linked (GlcNAc...) Potential
Glycosylation16921N-linked (GlcNAc...) Potential

Sequences

Sequence LengthMass (Da)Tools
Q61290 [UniParc].

Last modified November 1, 1996. Version 1.
Checksum: 70D9200B9E0C87A1

FASTA2,272257,236
        10         20         30         40         50         60 
MARFGEAVVV GRPGSGDGDS DQSRNRQGTP VPASGPAAAY KQSKAQRART MALYNPIPVR 

        70         80         90        100        110        120 
QNCFTVNRSL FIFGEDNIVR KYAKKLIDWP PFEYMILATI IANCIVLALE QHLPEDDKTP 

       130        140        150        160        170        180 
MSRRLEKTEP YFIGIFCFEA GIKIVALGFI FHKGSYLRNG WNVMDFIVVL SGILATAGTH 

       190        200        210        220        230        240 
FNTHVDLRAL RAVRVLRPLK LVSGIPSLQI VLKSIMKAMV PLLQIGLLLF FAILMFAIIG 

       250        260        270        280        290        300 
LEFYSGKLHR ACFMNNSGIL EGFDPPHPCG VQGCPAGYEC KDWIGPNDGI TQFDNILFAV 

       310        320        330        340        350        360 
LTVFQCITME GWTTVLYNTN DALGATWNWL YFIPLIIIGS FFVLNLVLGV LSGEFAKERE 

       370        380        390        400        410        420 
RVENRRAFMK LRRQQQIERE LNGYRAWIDK AEEVMLAEEN KNSGTSALEV LRRATIKRSR 

       430        440        450        460        470        480 
TEAMTRDSSD EHCVDISSVG TPLARASIKS TKVDGASYFR HKERLLRISI RHMVKSQVFY 

       490        500        510        520        530        540 
WIVLSVVALN TACVAIVHHN QPQWLTHLLY YAEFLFLGLF LLEMSLKMYG MGPRLYFHSS 

       550        560        570        580        590        600 
FNCFDFGVTV GSIFEVVWAI FRPGTSFGIS VLRALRLLRI FKITKYWASL RNLVVSLMSS 

       610        620        630        640        650        660 
MKSIISLLFL LFLFIVVFAL LGMQLFGGRF NFNDGTPSAN FDTFPAAIMT VFQILTGEDW 

       670        680        690        700        710        720 
NEVMYNGIRS QGGVSSGMWS AIYFIVLTLF GNYTLLNVFL AIAVDNLANA QELTKDEQEE 

       730        740        750        760        770        780 
EEAFNQKHAL QKAKEVSPMS APNMPSIERD RRRRHHMSMW EPRSSHLRER RRRHHMSVWE 

       790        800        810        820        830        840 
QRTSQLRRHM QMSSQEALNK EEAPPMNPLN PLNPLSPLNP LNAHPSLYRR PRPIEGLALG 

       850        860        870        880        890        900 
LGLEKCEEER ISRGGSLKGD IGGLTSALDN QRSPLSLGKR EPPWLPRSCH GNCDPIQQEA 

       910        920        930        940        950        960 
GGGETVVTFE DRARHRQSQR RSRHRRVRTE GKDSASASRS RSASQERSLD EGVSVEGEKE 

       970        980        990       1000       1010       1020 
HEPHSSHRSK EPTIHEEERT QDLRRTNSLM VPRGSGLVGA LDEAETPLVQ PQPELEVGKD 

      1030       1040       1050       1060       1070       1080 
AALTEQEAEG SSEQALLGDV QLDVGRGISQ SEPDLSCMTA NMDKATTEST SVTVAIPDVD 

      1090       1100       1110       1120       1130       1140 
PLVDSTVVNI SNKTDGEASP LKEAETKEEE EEVEKKKKQK KEKRETGKAM VPHSSMFIFS 

      1150       1160       1170       1180       1190       1200 
TTNPIRRACH YIVNLRYFEM CILLVIAASS IALAAEDPVL TNSERNKVLR YFDYVFTGVF 

      1210       1220       1230       1240       1250       1260 
TFEMVIKMID QGLILQDGSY FRDLWNILDF VVVVGALVAF ALANALGTNK GRDIKTIKSL 

      1270       1280       1290       1300       1310       1320 
RVLRVLRPLK TIKRLPKLKA VFDCVVTSLK NVFNILIVYK LFMFIFAVIA VQLFKGKFFY 

      1330       1340       1350       1360       1370       1380 
CTDSSKDTEK ECIGNYVDHE KNKMEVKGRE WKRHEFHYDN IIWALLTLFT VSTGEGWPQV 

      1390       1400       1410       1420       1430       1440 
LQHSVDVTEE DRGPSRSNRM EMSIFYVVYF VVFPFFFVNI FVALIIITFQ EQGDKMMEEC 

      1450       1460       1470       1480       1490       1500 
SLEKNERACI DFAISAKPLT RYMPQNRHTF QYRVWHFVVS PSFEYTIMAM IALNTVVLMM 

      1510       1520       1530       1540       1550       1560 
KYYTAPCTYE LALKYLNIAF TMVFSLECVL KVIAFGFLNY FRDTWNIFDF ITVIGSITEI 

      1570       1580       1590       1600       1610       1620 
ILTDSKLVNT SGFNMSFLKL FRAARLIKLL RQGYTIRILL WTFVQSFKAL PYVCLLIAML 

      1630       1640       1650       1660       1670       1680 
FFIYAIIGMQ VFGNIKLDEE SHINRHNNFR SFFGSLMLLF RSATGEAWQE IMLSCLGEKG 

      1690       1700       1710       1720       1730       1740 
CEPDTTAPSG QNESERCGTD LAYVYFVSFI FFCSFLMLNL FVAVIMDNFE YLTRDSSILG 

      1750       1760       1770       1780       1790       1800 
PHHLDEFVRV WAEYDRAACG RIHYTEMYEM LTLMSPPLGL GKRCPSKVAY KRLVLMNMPV 

      1810       1820       1830       1840       1850       1860 
AEDMTVHFTS TLMALIRTAL DIKIAKGGAD RQQLDSELQK ETLAIWPHLS QKMLDLLVPM 

      1870       1880       1890       1900       1910       1920 
PKASDLTVGK IYAAMMIMDY YKQSKVKKQR QQLEEQKNAP MFQRMEPSSL PQEIIANAKA 

      1930       1940       1950       1960       1970       1980 
LPYLQQDPVS GLSGRSGYPS MSPLSPQEIF QLACMDPADD GQFQEQQSLV VTDPSSMRRS 

      1990       2000       2010       2020       2030       2040 
FSTIRDKRSN SSWLEEFSME RSSENTYKSR RRSYHSSLRL SAHRLNSDSG HKSDTHRSGG 

      2050       2060       2070       2080       2090       2100 
RERGRSKERK HLLSPDVSRC NSEERGTQAD WESPERRQSR SPSEGRSQTP NRQGTGSLSE 

      2110       2120       2130       2140       2150       2160 
SSIPSISDTS TPRRSRRQLP PVPPKPRPLL SYSSLMRHTG GISPPPDGSE GGSPLASQAL 

      2170       2180       2190       2200       2210       2220 
ESNSACLTES SNSLHPQQGQ HPSPQHYISE PYLALHEDSH ASDCGEEETL TFEAAVATSL 

      2230       2240       2250       2260       2270 
GRSNTIGSAP PLRHSWQMPN GHYRRRRWGA WAGMMCGAVS DLLSDTEEDD KC 

« Hide

References

« Hide 'large scale' references
[1]"Structure and functional characterization of neuronal alpha 1E calcium channel subtypes."
Williams M.E., Marubio L.M., Deal C.R., Hans M., Brust P.F., Philipson L.H., Miller R.J., Johnson E.C., Harpold M.M., Ellis S.B.
J. Biol. Chem. 269:22347-22357(1994) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA].
Strain: BALB/c.
Tissue: Brain.
[2]"Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations."
Munton R.P., Tweedie-Cullen R., Livingstone-Zatchej M., Weinandy F., Waidelich M., Longo D., Gehrig P., Potthast F., Rutishauser D., Gerrits B., Panse C., Schlapbach R., Mansuy I.M.
Mol. Cell. Proteomics 6:283-293(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Brain cortex.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
L29346 mRNA. Translation: AAA59206.1.
PIRC54972.
UniGeneMm.267517.

3D structure databases

ProteinModelPortalQ61290.
SMRQ61290. Positions 359-403, 1252-1279.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

IntActQ61290. 2 interactions.

Protein family/group databases

TCDB1.A.1.11.3. the voltage-gated ion channel (vic) superfamily.

PTM databases

PhosphoSiteQ61290.

Proteomic databases

PaxDbQ61290.
PRIDEQ61290.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Organism-specific databases

MGIMGI:106217. Cacna1e.

Phylogenomic databases

eggNOGCOG1226.
HOVERGENHBG050763.
InParanoidQ61290.
PhylomeDBQ61290.

Gene expression databases

GenevestigatorQ61290.

Family and domain databases

Gene3D1.20.120.350. 4 hits.
InterProIPR027359. Channel_four-helix_dom.
IPR002048. EF_hand_dom.
IPR005821. Ion_trans_dom.
IPR014873. VDCC_a1su_IQ.
IPR005449. VDCC_R_a1su.
IPR002077. VDCCAlpha1.
[Graphical view]
PANTHERPTHR10037:SF57. PTHR10037:SF57. 1 hit.
PfamPF08763. Ca_chan_IQ. 1 hit.
PF00520. Ion_trans. 4 hits.
[Graphical view]
PRINTSPR00167. CACHANNEL.
PR01633. RVDCCALPHA1.
SMARTSM01062. Ca_chan_IQ. 1 hit.
[Graphical view]
PROSITEPS50222. EF_HAND_2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

PROQ61290.
SOURCESearch...

Entry information

Entry nameCAC1E_MOUSE
AccessionPrimary (citable) accession number: Q61290
Entry history
Integrated into UniProtKB/Swiss-Prot: July 15, 1999
Last sequence update: November 1, 1996
Last modified: April 16, 2014
This is version 128 of the entry and version 1 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot