Skip Header

You are using a version of Internet Explorer that may not display all features of this website. Please upgrade to a modern browser.
Contribute Send feedback
Read comments (?) or add your own

Q60760 (GRB10_MOUSE) Reviewed, UniProtKB/Swiss-Prot

Last modified July 9, 2014. Version 129. Feed History...

Clusters with 100%, 90%, 50% identity | Documents (3) | Third-party data text xml rdf/xml gff fasta
to top of pageNames·Attributes·General annotation·Ontologies·Interactions·Alt products·Sequence annotation·Sequences·References·Cross-refs·Entry info·DocumentsCustomize order

Names and origin

Protein namesRecommended name:
Growth factor receptor-bound protein 10
Alternative name(s):
GRB10 adapter protein
Maternally expressed gene 1 protein
Gene names
Name:Grb10
Synonyms:Meg1
OrganismMus musculus (Mouse) [Reference proteome]
Taxonomic identifier10090 [NCBI]
Taxonomic lineageEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresGliresRodentiaSciurognathiMuroideaMuridaeMurinaeMusMus

Protein attributes

Sequence length621 AA.
Sequence statusComplete.
Protein existenceEvidence at protein level

General annotation (Comments)

Function

Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. A similar role in the mediation of ubiquitination has also been suggested with INSR. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. Ref.10 Ref.11 Ref.14 Ref.15 Ref.17

Enzyme regulation

Phosphorylation by mTORC1 stabilizes and activates GRB10 constituting a feedback pathway by which mTORC1 inhibits INSR-dependent signaling By similarity.

Subunit structure

Interacts with ligand-activated tyrosine kinase receptors, including FGFR1, INSR, IGF1R, MET and PDGFRB in a phosphotyrosine-dependent manner through the SH2 domain. Poorly binds to the EGFR. Directly interacts with MAP3K14/NIK and is recruited to the EGFR-ERBB2 complex By similarity. Interacts with GIGYF1/PERQ1 and GIGYF2/TNRC15. When unphosphorylated, interacts with AKT1 and when phosphorylated with YWHAE/14-3-3 epsilon. Interacts with NEDD4. Interacts with LRP6, thus interfering with the binding of AXIN1 to LRP6. Binds to activated NRAS By similarity. Ref.1 Ref.2 Ref.7 Ref.9 Ref.10 Ref.13 Ref.14 Ref.15

Subcellular location

Cytoplasm. Note: When complexed with NEDD4 and IGF1R, follows IGF1R internalization, remaining associated with early endosomes. Uncouples from IGF1R before the sorting of the receptor to the lysosomal compartment. Ref.17

Tissue specificity

Widely expressed. Ref.1 Ref.2

Developmental stage

At 13.5 dpc, expressed in most embryonic tissues and in placenta. At 14.5 dpc, expressed at high levels in a variety of muscle tissues, including that of the face and trunk, the intercostal muscles, the diaphragm and cardiac muscle, the tongue and limbs (at protein level). In the brain, most abundant expression in the subependymal layers, in the meninges and in the choroid plexus (both epithelium and mesenchyme) (at protein level). High levels in the liver, bronchioles and the cartilage of the atlas, ribs and long bones (at protein level). In the kidney, expression limited to the developing tubules and mesenchyme (at protein level). Also detected in the adrenal gland and pancreatic bud (at protein level). At 12.5 dpc, paternal allele expression detected in the cartilage of the limbs, ribs and face and in the meninges. At 14.5 dpc, paternal allele expressed in the cartilage of the axis, ribs, head, and long bones, in the heart, lungs, gut, umbilicus and tongue, as well as in the meninges of the fourth ventricle. Not detected in the skeletal muscle. In most tissues, paternal expression is lower than maternal. Ref.6 Ref.11

Domain

The PH domain binds relatively non-specifically to several phosphoinositides, including PI5P, PI(4,5)P2, PI(3,4)P2 and PI(3,4,5)P3, with modest affinities By similarity.

Post-translational modification

Phosphorylated on serine residues upon EGF, FGF and PDGF stimulation. Ref.1 Ref.13

Disruption phenotype

Disruption of the maternal allele results in overgrowth of both the embryo and placenta such that mutant mice are at birth about 30% larger than normal. This effect occurs during embryogenesis and results in addition in disproportionate overgrowth of the liver with relative sparing of the brain. The major part of the growth phenotype seems to be IGF2-independent. Ref.11

Miscellaneous

The GRB10 locus is imprinted. The maternal allele is expressed in most tissues, except the brain where it is expressed from the paternal allele. Expression from the maternal allele in fetal and adult brain was however described in Ref.8.

Sequence similarities

Belongs to the GRB7/10/14 family.

Contains 1 PH domain.

Contains 1 Ras-associating domain.

Contains 1 SH2 domain.

Sequence caution

The sequence AAH53842.1 differs from that shown. Reason: Erroneous initiation.

The sequence BAE37514.1 differs from that shown. Reason: Erroneous initiation.

Ontologies

Keywords
   Cellular componentCytoplasm
   Coding sequence diversityAlternative splicing
   DomainSH2 domain
   PTMPhosphoprotein
   Technical term3D-structure
Complete proteome
Reference proteome
Gene Ontology (GO)
   Biological_processinsulin receptor signaling pathway

Inferred from electronic annotation. Source: Ensembl

insulin-like growth factor receptor signaling pathway

Inferred from physical interaction Ref.9. Source: MGI

negative regulation of Wnt signaling pathway

Inferred from direct assay Ref.15. Source: UniProtKB

negative regulation of glucose import

Inferred from mutant phenotype Ref.14. Source: BHF-UCL

negative regulation of glycogen biosynthetic process

Traceable author statement Ref.14. Source: BHF-UCL

negative regulation of insulin receptor signaling pathway

Inferred from mutant phenotype Ref.14. Source: BHF-UCL

negative regulation of phosphorylation

Inferred from direct assay Ref.14. Source: BHF-UCL

positive regulation of phosphorylation

Inferred from electronic annotation. Source: Ensembl

positive regulation of vascular endothelial growth factor receptor signaling pathway

Inferred from sequence or structural similarity. Source: UniProtKB

signal transduction

Traceable author statement Ref.2. Source: MGI

   Cellular_componentcytosol

Traceable author statement PubMed 9815134. Source: MGI

   Molecular_functionSH3/SH2 adaptor activity

Inferred from physical interaction Ref.14. Source: BHF-UCL

insulin receptor binding

Inferred from physical interaction Ref.14. Source: BHF-UCL

phosphotyrosine binding

Traceable author statement Ref.14. Source: BHF-UCL

protein binding

Inferred from physical interaction Ref.13Ref.15. Source: UniProtKB

Complete GO annotation...

Binary interactions

Alternative products

This entry describes 3 isoforms produced by alternative splicing. [Align] [Select]
Isoform 1 (identifier: Q60760-1)

Also known as: Alpha;

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.
Isoform 2 (identifier: Q60760-2)

Also known as: Delta;

The sequence of this isoform differs from the canonical sequence as follows:
     117-141: Missing.
Note: Predominant isoform in most tissues.
Isoform 3 (identifier: Q60760-3)

The sequence of this isoform differs from the canonical sequence as follows:
     117-196: Missing.

Sequence annotation (Features)

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifier

Molecule processing

Chain1 – 621621Growth factor receptor-bound protein 10
PRO_0000150347

Regions

Domain194 – 27885Ras-associating
Domain318 – 427110PH
Domain520 – 60182SH2

Amino acid modifications

Modified residue501Phosphoserine By similarity
Modified residue961Phosphoserine; alternate Ref.12
Modified residue961Phosphoserine; by MTOR, MAPK1 and MAPK3; alternate By similarity
Modified residue4551Phosphoserine; by MTOR and PKB/AKT1 By similarity
Modified residue4581Phosphoserine Ref.16
Modified residue5031Phosphoserine; by MTOR, MAPK1 and MAPK3 By similarity

Natural variations

Alternative sequence117 – 19680Missing in isoform 3.
VSP_012379
Alternative sequence117 – 14125Missing in isoform 2.
VSP_001844

Experimental info

Sequence conflict491 – 4922KR → NG in AAB53687. Ref.1
Sequence conflict5551A → T in BAC28088. Ref.3

Secondary structure

.................. 621
Helix Strand Turn

Details...

Sequences

Sequence LengthMass (Da)Tools
Isoform 1 (Alpha) [UniParc].

Last modified January 4, 2005. Version 2.
Checksum: 6FC737E8F35468BB

FASTA62170,585
        10         20         30         40         50         60 
MNNDINSSVE SLNSACNMQS DTDTAPLLED GQHASNQGAA SSSRGQPQAS PRQKMQRSQP 

        70         80         90        100        110        120 
VHILRRLQEE DQQLRTASLP AIPNPFPELT GAAPGSPPSV APSSLPPPPS QPPAKHCGRC 

       130        140        150        160        170        180 
EKWIPGENTR GNGKRKIWRW QFPPGFQLSK LTRPGLWTKT TARFSKKQPK NQCPTDTVNP 

       190        200        210        220        230        240 
VARMPTSQME KLRLRKDVKV FSEDGTSKVV EILTDMTARD LCQLLVYKSH CVDDNSWTLV 

       250        260        270        280        290        300 
EHHPQLGLER CLEDHEIVVQ VESTMPSESK FLFRKNYAKY EFFKNPVNFF PDQMVNWCQQ 

       310        320        330        340        350        360 
SNGGQAQLLQ NFLNTSSCPE IQGFLQVKEV GRKSWKKLYV CLRRSGLYYS TKGTSKEPRH 

       370        380        390        400        410        420 
LQLLADLEES SIFYLIAGKK QYNAPNEHGM CIKPNKAKTE MKELRLLCAE DEQIRTCWMT 

       430        440        450        460        470        480 
AFRLLKYGML LYQNYRIPQR KGLPPPFNAP MRSVSENSLV AMDFSGQIGR VIDNPAEAQS 

       490        500        510        520        530        540 
AALEEGHAWR KRSTRMNILS SQSPLHPSTL NAVIHRTQHW FHGRISREES HRIIKQQGLV 

       550        560        570        580        590        600 
DGLFLLRDSQ SNPKAFVLTL CHHQKIKNFQ ILPCEDDGQT FFTLDDGNTK FSDLIQLVDF 

       610        620 
YQLNKGVLPC KLKHHCIRVA L 

« Hide

Isoform 2 (Delta) [UniParc].

Checksum: EB13CA896DF41533
Show »

FASTA59667,543
Isoform 3 [UniParc].

Checksum: A8FA9ED57C85F674
Show »

FASTA54161,218

References

« Hide 'large scale' references
[1]"The cloning of Grb10 reveals a new family of SH2 domain proteins."
Ooi J., Yajnik V., Immanuel D., Gordon M., Moskow J.J., Buchberg A., Margolis B.
Oncogene 10:1621-1630(1995) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 1), INTERACTION WITH EGFR, TISSUE SPECIFICITY, PHOSPHORYLATION.
Strain: Swiss.
[2]"The adapter protein Grb10 associates preferentially with the insulin receptor as compared with the IGF-I receptor in mouse fibroblasts."
Laviola L., Giorgino F., Chow J.C., Baquero J.A., Hansen H., Ooi J., Zhu J., Riedel H., Smith R.J.
J. Clin. Invest. 99:830-837(1997) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM 2), INTERACTION WITH INSR AND IGF1R, TISSUE SPECIFICITY.
[3]"The transcriptional landscape of the mammalian genome."
Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., Forrest A.R., Zavolan M., Davis M.J. expand/collapse author list , Wilming L.G., Aidinis V., Allen J.E., Ambesi-Impiombato A., Apweiler R., Aturaliya R.N., Bailey T.L., Bansal M., Baxter L., Beisel K.W., Bersano T., Bono H., Chalk A.M., Chiu K.P., Choudhary V., Christoffels A., Clutterbuck D.R., Crowe M.L., Dalla E., Dalrymple B.P., de Bono B., Della Gatta G., di Bernardo D., Down T., Engstrom P., Fagiolini M., Faulkner G., Fletcher C.F., Fukushima T., Furuno M., Futaki S., Gariboldi M., Georgii-Hemming P., Gingeras T.R., Gojobori T., Green R.E., Gustincich S., Harbers M., Hayashi Y., Hensch T.K., Hirokawa N., Hill D., Huminiecki L., Iacono M., Ikeo K., Iwama A., Ishikawa T., Jakt M., Kanapin A., Katoh M., Kawasawa Y., Kelso J., Kitamura H., Kitano H., Kollias G., Krishnan S.P., Kruger A., Kummerfeld S.K., Kurochkin I.V., Lareau L.F., Lazarevic D., Lipovich L., Liu J., Liuni S., McWilliam S., Madan Babu M., Madera M., Marchionni L., Matsuda H., Matsuzawa S., Miki H., Mignone F., Miyake S., Morris K., Mottagui-Tabar S., Mulder N., Nakano N., Nakauchi H., Ng P., Nilsson R., Nishiguchi S., Nishikawa S., Nori F., Ohara O., Okazaki Y., Orlando V., Pang K.C., Pavan W.J., Pavesi G., Pesole G., Petrovsky N., Piazza S., Reed J., Reid J.F., Ring B.Z., Ringwald M., Rost B., Ruan Y., Salzberg S.L., Sandelin A., Schneider C., Schoenbach C., Sekiguchi K., Semple C.A., Seno S., Sessa L., Sheng Y., Shibata Y., Shimada H., Shimada K., Silva D., Sinclair B., Sperling S., Stupka E., Sugiura K., Sultana R., Takenaka Y., Taki K., Tammoja K., Tan S.L., Tang S., Taylor M.S., Tegner J., Teichmann S.A., Ueda H.R., van Nimwegen E., Verardo R., Wei C.L., Yagi K., Yamanishi H., Zabarovsky E., Zhu S., Zimmer A., Hide W., Bult C., Grimmond S.M., Teasdale R.D., Liu E.T., Brusic V., Quackenbush J., Wahlestedt C., Mattick J.S., Hume D.A., Kai C., Sasaki D., Tomaru Y., Fukuda S., Kanamori-Katayama M., Suzuki M., Aoki J., Arakawa T., Iida J., Imamura K., Itoh M., Kato T., Kawaji H., Kawagashira N., Kawashima T., Kojima M., Kondo S., Konno H., Nakano K., Ninomiya N., Nishio T., Okada M., Plessy C., Shibata K., Shiraki T., Suzuki S., Tagami M., Waki K., Watahiki A., Okamura-Oho Y., Suzuki H., Kawai J., Hayashizaki Y.
Science 309:1559-1563(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 2).
Strain: C57BL/6J.
Tissue: Embryo and Embryonic head.
[4]Griffiths C., Sycamore N.
Submitted (NOV-2004) to the EMBL/GenBank/DDBJ databases
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
[5]"The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
The MGC Project Team
Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORMS 2 AND 3).
Tissue: Eye and Olfactory epithelium.
[6]"Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene."
Miyoshi N., Kuroiwa Y., Kohda T., Shitara H., Yonekawa H., Kawabe T., Hasegawa H., Barton S.C., Surani M.A., Kaneko-Ishino T., Ishino F.
Proc. Natl. Acad. Sci. U.S.A. 95:1102-1107(1998) [PubMed] [Europe PMC] [Abstract]
Cited for: IMPRINTING, DEVELOPMENTAL STAGE.
[7]"Grb10, a positive, stimulatory signaling adapter in platelet-derived growth factor BB-, insulin-like growth factor I-, and insulin-mediated mitogenesis."
Wang J., Dai H., Yousaf N., Moussaif M., Deng Y., Boufelliga A., Swamy O.R., Leone M.E., Riedel H.
Mol. Cell. Biol. 19:6217-6228(1999) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH FGFR1; INSR; IGF1R; MET AND PDGFRB.
[8]"Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion."
Blagitko N., Mergenthaler S., Schulz U., Wollmann H.A., Craigen W., Eggermann T., Ropers H.-H., Kalscheuer V.M.
Hum. Mol. Genet. 9:1587-1595(2000) [PubMed] [Europe PMC] [Abstract]
Cited for: IMPRINTING.
[9]"Two novel proteins that are linked to insulin-like growth factor (IGF-I) receptors by the Grb10 adapter and modulate IGF-I signaling."
Giovannone B., Lee E., Laviola L., Giorgino F., Cleveland K.A., Smith R.J.
J. Biol. Chem. 278:31564-31573(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH GIGYF1 AND GIGYF2.
[10]"The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor."
Vecchione A., Marchese A., Henry P., Rotin D., Morrione A.
Mol. Cell. Biol. 23:3363-3372(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH IGF1R AND NEDD4.
[11]"Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism."
Charalambous M., Smith F.M., Bennett W.R., Crew T.E., Mackenzie F., Ward A.
Proc. Natl. Acad. Sci. U.S.A. 100:8292-8297(2003) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, DISRUPTION PHENOTYPE, IMPRINTING, DEVELOPMENTAL STAGE.
[12]"Phosphoproteomic analysis of the developing mouse brain."
Ballif B.A., Villen J., Beausoleil S.A., Schwartz D., Gygi S.P.
Mol. Cell. Proteomics 3:1093-1101(2004) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-96, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Embryonic brain.
[13]"Phosphorylation of grb10 regulates its interaction with 14-3-3."
Urschel S., Bassermann F., Bai R.Y., Munch S., Peschel C., Duyster J.
J. Biol. Chem. 280:16987-16993(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: INTERACTION WITH AKT1 AND YWHAE, PHOSPHORYLATION.
[14]"Distinct Grb10 domain requirements for effects on glucose uptake and insulin signaling."
Mori K., Giovannone B., Smith R.J.
Mol. Cell. Endocrinol. 230:39-50(2005) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH INSR.
[15]"GRB10 binds to LRP6, the Wnt co-receptor and inhibits canonical Wnt signaling pathway."
Tezuka N., Brown A.M., Yanagawa S.
Biochem. Biophys. Res. Commun. 356:648-654(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, INTERACTION WITH LRP6.
[16]"Large-scale phosphorylation analysis of mouse liver."
Villen J., Beausoleil S.A., Gerber S.A., Gygi S.P.
Proc. Natl. Acad. Sci. U.S.A. 104:1488-1493(2007) [PubMed] [Europe PMC] [Abstract]
Cited for: PHOSPHORYLATION [LARGE SCALE ANALYSIS] AT SER-458, IDENTIFICATION BY MASS SPECTROMETRY [LARGE SCALE ANALYSIS].
Tissue: Liver.
[17]"Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization."
Monami G., Emiliozzi V., Morrione A.
J. Cell. Physiol. 216:426-437(2008) [PubMed] [Europe PMC] [Abstract]
Cited for: FUNCTION, SUBCELLULAR LOCATION.
+Additional computationally mapped references.

Cross-references

Sequence databases

EMBL
GenBank
DDBJ
U18996 mRNA. Translation: AAB53687.1.
AF022072 mRNA. Translation: AAB72103.1.
AK030727 mRNA. Translation: BAC27100.1.
AK032927 mRNA. Translation: BAC28088.1.
AK163841 mRNA. Translation: BAE37514.1. Different initiation.
AL645803, AL663087 Genomic DNA. Translation: CAI23990.1.
AL645803, AL663087 Genomic DNA. Translation: CAI23991.1.
AL663087, AL645803 Genomic DNA. Translation: CAI25685.1.
AL663087, AL645803 Genomic DNA. Translation: CAI25687.1.
BC016111 mRNA. Translation: AAH16111.1.
BC053842 mRNA. Translation: AAH53842.1. Different initiation.
CCDSCCDS24440.1. [Q60760-2]
CCDS48754.1. [Q60760-3]
PIRI49199.
RefSeqNP_001171100.1. NM_001177629.1. [Q60760-3]
NP_034475.2. NM_010345.4. [Q60760-2]
XP_006514592.1. XM_006514529.1. [Q60760-1]
UniGeneMm.273117.
Mm.491389.

3D structure databases

PDBe
RCSB-PDB
PDBj
EntryMethodResolution (Å)ChainPositionsPDBsum
3M7FX-ray2.00A514-621[»]
ProteinModelPortalQ60760.
SMRQ60760. Positions 195-437, 456-620.
ModBaseSearch...
MobiDBSearch...

Protein-protein interaction databases

BioGrid200045. 6 interactions.
DIPDIP-446N.
IntActQ60760. 8 interactions.
MINTMINT-102080.

PTM databases

PhosphoSiteQ60760.

Proteomic databases

MaxQBQ60760.
PaxDbQ60760.
PRIDEQ60760.

Protocols and materials databases

StructuralBiologyKnowledgebaseSearch...

Genome annotation databases

EnsemblENSMUST00000093321; ENSMUSP00000091011; ENSMUSG00000020176. [Q60760-2]
ENSMUST00000109654; ENSMUSP00000105281; ENSMUSG00000020176. [Q60760-3]
GeneID14783.
KEGGmmu:14783.
UCSCuc007iaz.2. mouse. [Q60760-3]
uc007iba.2. mouse. [Q60760-2]

Organism-specific databases

CTD2887.
MGIMGI:103232. Grb10.

Phylogenomic databases

eggNOGNOG307156.
GeneTreeENSGT00550000074537.
HOVERGENHBG000468.
InParanoidQ60760.
OMAESTMGSE.
OrthoDBEOG7SFHW7.
PhylomeDBQ60760.
TreeFamTF317511.

Gene expression databases

ArrayExpressQ60760.
BgeeQ60760.
CleanExMM_GRB10.
GenevestigatorQ60760.

Family and domain databases

Gene3D2.30.29.30. 1 hit.
3.30.505.10. 1 hit.
InterProIPR015042. BPS-dom.
IPR011993. PH_like_dom.
IPR001849. Pleckstrin_homology.
IPR000159. Ras-assoc.
IPR000980. SH2.
IPR029071. Ubiquitin-rel_dom.
[Graphical view]
PfamPF08947. BPS. 1 hit.
PF00169. PH. 1 hit.
PF00788. RA. 1 hit.
PF00017. SH2. 1 hit.
[Graphical view]
PRINTSPR00401. SH2DOMAIN.
SMARTSM00233. PH. 1 hit.
SM00314. RA. 1 hit.
SM00252. SH2. 1 hit.
[Graphical view]
SUPFAMSSF54236. SSF54236. 1 hit.
SSF55550. SSF55550. 1 hit.
PROSITEPS50003. PH_DOMAIN. 1 hit.
PS50200. RA. 1 hit.
PS50001. SH2. 1 hit.
[Graphical view]
ProtoNetSearch...

Other

ChiTaRSGRB10. mouse.
NextBio286903.
PROQ60760.
SOURCESearch...

Entry information

Entry nameGRB10_MOUSE
AccessionPrimary (citable) accession number: Q60760
Secondary accession number(s): O35352 expand/collapse secondary AC list , Q3TQ71, Q7TSA4, Q8BSH4, Q8BSS5, Q91WC5
Entry history
Integrated into UniProtKB/Swiss-Prot: July 15, 1999
Last sequence update: January 4, 2005
Last modified: July 9, 2014
This is version 129 of the entry and version 2 of the sequence. [Complete history]
Entry statusReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program

Relevant documents

SIMILARITY comments

Index of protein domains and families

PDB cross-references

Index of Protein Data Bank (PDB) cross-references

MGD cross-references

Mouse Genome Database (MGD) cross-references in UniProtKB/Swiss-Prot