Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Protein ripply2

Gene

RIPPLY2

Organism
Homo sapiens (Human)
Status
Reviewed-Annotation score: Annotation score: 4 out of 5-Experimental evidence at protein leveli

Functioni

Plays a role in somitogenesis. Required for somite segregation and establishment of rostrocaudal polarity in somites (By similarity).By similarity

GO - Biological processi

Complete GO annotation...

Keywords - Molecular functioni

Developmental protein

Names & Taxonomyi

Protein namesi
Recommended name:
Protein ripply2
Gene namesi
Name:RIPPLY2
Synonyms:C6orf159
OrganismiHomo sapiens (Human)
Taxonomic identifieri9606 [NCBI]
Taxonomic lineageiEukaryotaMetazoaChordataCraniataVertebrataEuteleostomiMammaliaEutheriaEuarchontogliresPrimatesHaplorrhiniCatarrhiniHominidaeHomo
Proteomesi
  • UP000005640 Componenti: Chromosome 6

Organism-specific databases

HGNCiHGNC:21390. RIPPLY2.

Subcellular locationi

  • Nucleus By similarity

GO - Cellular componenti

Complete GO annotation...

Keywords - Cellular componenti

Nucleus

Pathology & Biotechi

Involvement in diseasei

Spondylocostal dysostosis 6, autosomal recessive (SCDO6)1 Publication
The disease is caused by mutations affecting the gene represented in this entry.
Disease descriptionA form of spondylocostal dysostosis, a condition of variable severity associated with vertebral and rib segmentation defects. The main skeletal malformations include fusion of vertebrae, hemivertebrae, fusion of certain ribs, and other rib malformations. Deformity of the chest and spine (severe scoliosis, kyphoscoliosis and lordosis) is a natural consequence of the malformation and leads to a dwarf-like appearance. As the thorax is small, infants frequently have respiratory insufficiency and repeated respiratory infections resulting in life-threatening complications in the first year of life.
See also OMIM:616566

Keywords - Diseasei

Dwarfism

Organism-specific databases

MIMi616566. phenotype.
PharmGKBiPA162401349.

Polymorphism and mutation databases

DMDMi74745808.

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 128128Protein ripply2PRO_0000307759Add
BLAST

Proteomic databases

PaxDbiQ5TAB7.
PRIDEiQ5TAB7.

PTM databases

iPTMnetiQ5TAB7.

Expressioni

Gene expression databases

BgeeiQ5TAB7.
CleanExiHS_RIPPLY2.
GenevisibleiQ5TAB7. HS.

Organism-specific databases

HPAiHPA047454.

Interactioni

Binary interactionsi

WithEntry#Exp.IntActNotes
CCDC155Q8N6L03EBI-10246897,EBI-749265
SYNE4Q8N2053EBI-10246897,EBI-7131783
TFGQ05BK63EBI-10246897,EBI-10246902

Protein-protein interaction databases

BioGridi126411. 13 interactions.
IntActiQ5TAB7. 3 interactions.
STRINGi9606.ENSP00000358703.

Structurei

3D structure databases

ProteinModelPortaliQ5TAB7.
ModBaseiSearch...
MobiDBiSearch...

Family & Domainsi

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni77 – 11236Ripply homology domainSequence analysisAdd
BLAST

Motif

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Motifi37 – 404WRPW motifSequence analysis

Domaini

The ripply homology domain is required for transcriptional repression.By similarity
The WRPW motif is required for binding to tle/groucho proteins.By similarity

Sequence similaritiesi

Belongs to the ripply family.Curated

Phylogenomic databases

eggNOGiENOG410J290. Eukaryota.
ENOG4112884. LUCA.
GeneTreeiENSGT00390000008909.
HOGENOMiHOG000063681.
HOVERGENiHBG095612.
InParanoidiQ5TAB7.
OMAiMPDGPGM.
OrthoDBiEOG7JT70D.
PhylomeDBiQ5TAB7.
TreeFamiTF336045.

Family and domain databases

InterProiIPR028127. Ripply_fam.
[Graphical view]
PANTHERiPTHR16770. PTHR16770. 1 hit.
PfamiPF14998. Ripply. 1 hit.
[Graphical view]

Sequences (2)i

Sequence statusi: Complete.

This entry describes 2 isoformsi produced by alternative splicing. AlignAdd to basket

Isoform 12 Publications (identifier: Q5TAB7-1) [UniParc]FASTAAdd to basket

This isoform has been chosen as the 'canonical' sequence. All positional information in this entry refers to it. This is also the sequence that appears in the downloadable versions of the entry.

« Hide

        10         20         30         40         50
MENAGGAEGT ESGAAACAAT DGPTRRAGAD SGYAGFWRPW VDAGGKKEEE
60 70 80 90 100
TPNHAAEAMP DGPGMTAASG KLYQFRHPVR LFWPKSKCYD YLYQEAEALL
110 120
KNFPIQATIS FYEDSDSEDE IEDLTCEN
Note: No experimental confirmation available.Curated
Length:128
Mass (Da):13,906
Last modified:December 21, 2004 - v1
Checksum:iF1ED3019B4E1DA02
GO
Isoform 21 Publication (identifier: Q5TAB7-2) [UniParc]FASTAAdd to basket

The sequence of this isoform differs from the canonical sequence as follows:
     1-58: Missing.

Note: No experimental confirmation available.Curated
Show »
Length:70
Mass (Da):8,115
Checksum:i013584A2457D4517
GO

Alternative sequence

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Alternative sequencei1 – 5858Missing in isoform 2. 1 PublicationVSP_052556Add
BLAST

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AL139232 Genomic DNA. Translation: CAI19902.1.
AL139232 Genomic DNA. Translation: CAI19903.1.
CH471051 Genomic DNA. Translation: EAW48651.1.
BC130460 mRNA. Translation: AAI30461.1.
BC132968 mRNA. Translation: AAI32969.1.
CCDSiCCDS34493.1. [Q5TAB7-1]
RefSeqiNP_001009994.1. NM_001009994.2. [Q5TAB7-1]
UniGeneiHs.149454.

Genome annotation databases

EnsembliENST00000369687; ENSP00000358701; ENSG00000203877. [Q5TAB7-2]
ENST00000369689; ENSP00000358703; ENSG00000203877. [Q5TAB7-1]
GeneIDi134701.
KEGGihsa:134701.
UCSCiuc003pke.5. human. [Q5TAB7-1]

Keywords - Coding sequence diversityi

Alternative splicing

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
AL139232 Genomic DNA. Translation: CAI19902.1.
AL139232 Genomic DNA. Translation: CAI19903.1.
CH471051 Genomic DNA. Translation: EAW48651.1.
BC130460 mRNA. Translation: AAI30461.1.
BC132968 mRNA. Translation: AAI32969.1.
CCDSiCCDS34493.1. [Q5TAB7-1]
RefSeqiNP_001009994.1. NM_001009994.2. [Q5TAB7-1]
UniGeneiHs.149454.

3D structure databases

ProteinModelPortaliQ5TAB7.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi126411. 13 interactions.
IntActiQ5TAB7. 3 interactions.
STRINGi9606.ENSP00000358703.

PTM databases

iPTMnetiQ5TAB7.

Polymorphism and mutation databases

DMDMi74745808.

Proteomic databases

PaxDbiQ5TAB7.
PRIDEiQ5TAB7.

Protocols and materials databases

DNASUi134701.
Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsembliENST00000369687; ENSP00000358701; ENSG00000203877. [Q5TAB7-2]
ENST00000369689; ENSP00000358703; ENSG00000203877. [Q5TAB7-1]
GeneIDi134701.
KEGGihsa:134701.
UCSCiuc003pke.5. human. [Q5TAB7-1]

Organism-specific databases

CTDi134701.
GeneCardsiRIPPLY2.
HGNCiHGNC:21390. RIPPLY2.
HPAiHPA047454.
MIMi609891. gene.
616566. phenotype.
neXtProtiNX_Q5TAB7.
PharmGKBiPA162401349.
GenAtlasiSearch...

Phylogenomic databases

eggNOGiENOG410J290. Eukaryota.
ENOG4112884. LUCA.
GeneTreeiENSGT00390000008909.
HOGENOMiHOG000063681.
HOVERGENiHBG095612.
InParanoidiQ5TAB7.
OMAiMPDGPGM.
OrthoDBiEOG7JT70D.
PhylomeDBiQ5TAB7.
TreeFamiTF336045.

Miscellaneous databases

GenomeRNAii134701.
PROiQ5TAB7.
SOURCEiSearch...

Gene expression databases

BgeeiQ5TAB7.
CleanExiHS_RIPPLY2.
GenevisibleiQ5TAB7. HS.

Family and domain databases

InterProiIPR028127. Ripply_fam.
[Graphical view]
PANTHERiPTHR16770. PTHR16770. 1 hit.
PfamiPF14998. Ripply. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "The DNA sequence and analysis of human chromosome 6."
    Mungall A.J., Palmer S.A., Sims S.K., Edwards C.A., Ashurst J.L., Wilming L., Jones M.C., Horton R., Hunt S.E., Scott C.E., Gilbert J.G.R., Clamp M.E., Bethel G., Milne S., Ainscough R., Almeida J.P., Ambrose K.D., Andrews T.D.
    , Ashwell R.I.S., Babbage A.K., Bagguley C.L., Bailey J., Banerjee R., Barker D.J., Barlow K.F., Bates K., Beare D.M., Beasley H., Beasley O., Bird C.P., Blakey S.E., Bray-Allen S., Brook J., Brown A.J., Brown J.Y., Burford D.C., Burrill W., Burton J., Carder C., Carter N.P., Chapman J.C., Clark S.Y., Clark G., Clee C.M., Clegg S., Cobley V., Collier R.E., Collins J.E., Colman L.K., Corby N.R., Coville G.J., Culley K.M., Dhami P., Davies J., Dunn M., Earthrowl M.E., Ellington A.E., Evans K.A., Faulkner L., Francis M.D., Frankish A., Frankland J., French L., Garner P., Garnett J., Ghori M.J., Gilby L.M., Gillson C.J., Glithero R.J., Grafham D.V., Grant M., Gribble S., Griffiths C., Griffiths M.N.D., Hall R., Halls K.S., Hammond S., Harley J.L., Hart E.A., Heath P.D., Heathcott R., Holmes S.J., Howden P.J., Howe K.L., Howell G.R., Huckle E., Humphray S.J., Humphries M.D., Hunt A.R., Johnson C.M., Joy A.A., Kay M., Keenan S.J., Kimberley A.M., King A., Laird G.K., Langford C., Lawlor S., Leongamornlert D.A., Leversha M., Lloyd C.R., Lloyd D.M., Loveland J.E., Lovell J., Martin S., Mashreghi-Mohammadi M., Maslen G.L., Matthews L., McCann O.T., McLaren S.J., McLay K., McMurray A., Moore M.J.F., Mullikin J.C., Niblett D., Nickerson T., Novik K.L., Oliver K., Overton-Larty E.K., Parker A., Patel R., Pearce A.V., Peck A.I., Phillimore B.J.C.T., Phillips S., Plumb R.W., Porter K.M., Ramsey Y., Ranby S.A., Rice C.M., Ross M.T., Searle S.M., Sehra H.K., Sheridan E., Skuce C.D., Smith S., Smith M., Spraggon L., Squares S.L., Steward C.A., Sycamore N., Tamlyn-Hall G., Tester J., Theaker A.J., Thomas D.W., Thorpe A., Tracey A., Tromans A., Tubby B., Wall M., Wallis J.M., West A.P., White S.S., Whitehead S.L., Whittaker H., Wild A., Willey D.J., Wilmer T.E., Wood J.M., Wray P.W., Wyatt J.C., Young L., Younger R.M., Bentley D.R., Coulson A., Durbin R.M., Hubbard T., Sulston J.E., Dunham I., Rogers J., Beck S.
    Nature 425:805-811(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
  2. Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
  3. "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)."
    The MGC Project Team
    Genome Res. 14:2121-2127(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM 1).
    Tissue: BrainImported.
  4. "Groucho-associated transcriptional repressor ripply1 is required for proper transition from the presomitic mesoderm to somites."
    Kawamura A., Koshida S., Hijikata H., Ohbayashi A., Kondoh H., Takada S.
    Dev. Cell 9:735-744(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: IDENTIFICATION AS RIPPLY2.
  5. Cited for: INVOLVEMENT IN SCDO6.

Entry informationi

Entry nameiRIPP2_HUMAN
AccessioniPrimary (citable) accession number: Q5TAB7
Secondary accession number(s): Q5TAB6
Entry historyi
Integrated into UniProtKB/Swiss-Prot: October 23, 2007
Last sequence update: December 21, 2004
Last modified: June 8, 2016
This is version 90 of the entry and version 1 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programChordata Protein Annotation Program
DisclaimerAny medical or genetic information present in this entry is provided for research, educational and informational purposes only. It is not in any way intended to be used as a substitute for professional medical advice, diagnosis, treatment or care.

Miscellaneousi

Keywords - Technical termi

Complete proteome, Reference proteome

Documents

  1. Human chromosome 6
    Human chromosome 6: entries, gene names and cross-references to MIM
  2. MIM cross-references
    Online Mendelian Inheritance in Man (MIM) cross-references in UniProtKB/Swiss-Prot
  3. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.