Skip Header

You are using a version of browser that may not display all the features of this website. Please consider upgrading your browser.
Protein

Cryptochrome-1

Gene

CRY1

Organism
Arabidopsis thaliana (Mouse-ear cress)
Status
Reviewed-Annotation score: Annotation score: 5 out of 5-Experimental evidence at protein leveli

Functioni

Photoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interacts with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulates the corresponding metabolic and developmental programs (PubMed:21841916). Blue-light absorbing flavoprotein that activates reversible flavin photoreduction via an electron transport chain comprising a tryptophan triad (W-324, W-377 and W-400), accompanied by a large conformational change upon photoexcitation, or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 5 minutes (PubMed:26313597, PubMed:25157750, PubMed:23398192, PubMed:21875594, PubMed:21467031). Also involved in the detection of blue/green ratio in light (shade under leaf canopies) and subsequent adaptations on plant growth and development (PubMed:20668058). In darkness, the dark reoxidation of flavin occurs and lead to inactivated state (PubMed:21467031, PubMed:23398192). Perceives low blue light (LBL) and responds by directly contacting two bHLH transcription factors, PIF4 and PIF5, at chromatin on E-box variant 5'-CA[CT]GTG-3' to promote their activity and stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation and hyponastic growth in low blue light) (PubMed:26724867, PubMed:19558423). When activated by high-intensity blue light, catalyzes direct enzymatic conversion of molecular oxygen O2 to reactive oxygen species (ROS) and hydrogen peroxide H2O2 in vitro. ROS accumulation upon activation by blue light leads to cell death in protoplasts (PubMed:25728686). Seems essential for blue-light-triggered and singlet oxygen-mediated programmed cell death (PCD) (PubMed:17075038). Required for the induction of nuclear genes encoding photoprotective components by GATA24 and GATA28 in extreme light intensities that exceed the electron utilization capacity of the chloroplast (PubMed:22786870). Involved in shortening the circadian clock period, especially at 27 degrees Celsius, in blue light (BL) and required to maintain clock genes expression rhythm (PubMed:23511208). Mediates blue light-induced gene expression and hypocotyl elongation through the inhibition of COP1-mediated degradation of the transcription factors BIT1 and HY5 and via the activation of anion channels at the plasma membrane, probably via auxin signaling (PubMed:21511872, PubMed:21511871, PubMed:16093319, PubMed:18397371, PubMed:12324610, PubMed:8528277, PubMed:9765547, PubMed:25721730). Required for the hypocotyl hook formation in darkness (PubMed:22855128). Involved in blue light-dependent stomatal opening, CHS gene expression, transpiration, inhibition of stem growth and increase of root growth, probably by regulating abscisic acid (ABA) (PubMed:22147516, PubMed:16093319, PubMed:16703358, PubMed:7756321, PubMed:9565033). Prevents lateral roots growth by inhibiting auxin transport (PubMed:20133010). Necessary for shade avoidance syndrome (SAS), characterized by leaf hyponasty and reduced lamina/petiole ratio, when exposed to blue light attenuation (PubMed:21457375). Together with phototropins, involved in phototropism regulation by various blue light fluence; blue light attenuates phototropism in high fluence rates (100 µmol.m-2.s-1) but enhances phototropism in low fluence rates (<1.0 µmol.m-2.s-1) (PubMed:12857830). Required for blue/UV-A wavelengths-mediated inhibition of explants shoot regeneration in vitro (e.g. new shoot apical meristems regeneration from excised cotyledons) (PubMed:22681544). Modulates anthocyanin accumulation in a PHYA-dependent manner in far-red-light. Acts as a PHYA/PHYB-dependent modulator of chlorophyll accumulation in red light. Contributes to most blue light deetiolation responses (PubMed:9733523, PubMed:8528277). May act as a chemical magnetoreceptor, via magnetically sensitive kinetics and quantum yields of photo-induced flavin / tryptophan radical pairs (PubMed:22421133). The effect of near-null magnetic field on flowering is altered by changes of blue light cycle and intensity in a CRY1/CRY2-dependent manner (PubMed:26095447). Involved in the strigolactone signaling that regulates hypocotyl growth in response to blue light (PubMed:24126495). Modulates temperature-dependent growth and physiology maintenance, especially at warm ambient temperatures, via HFR1-dependent activity (PubMed:21265897).1 Publication34 Publications
Implicated in promoting R protein-mediated resistance to Pseudomonas syringae pv. tomato (Pst.) DC3000 under continuous light conditions. Promotes systemic acquired resistance (SAR) and PR gene expression triggered by P. syringae.1 Publication

Cofactori

Protein has several cofactor binding sites:

Enzyme regulationi

Light exposure induces a conformational change in the C-terminal domain CCT1 required for activity.1 Publication

Sites

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Binding sitei235 – 2351FADCombined sources1 Publication
Metal bindingi238 – 2381Magnesium 1; via carbonyl oxygenCombined sources1 Publication
Binding sitei239 – 2391ATPCombined sources1 Publication
Metal bindingi241 – 2411Magnesium 2; via carbonyl oxygenCombined sources1 Publication
Metal bindingi244 – 2441Magnesium 2Combined sources1 Publication
Metal bindingi246 – 2461Magnesium 1Combined sources1 Publication
Metal bindingi246 – 2461Magnesium 2Combined sources1 Publication
Binding sitei293 – 2931FAD; via carbonyl oxygenCombined sources1 Publication
Sitei324 – 3241Involved in electron transfer from the protein surface to the FAD cofactor1 Publication1 Publication
Metal bindingi358 – 3581Magnesium 1; via tele nitrogenCombined sources1 Publication
Binding sitei359 – 3591FADCombined sources1 Publication
Sitei377 – 3771Involved in electron transfer from the protein surface to the FAD cofactor1 Publication
Sitei400 – 4001Involved in electron transfer from the protein surface to the FAD cofactor1 Publication1 Publication
Binding sitei409 – 4091ATPCombined sources1 Publication

Regions

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Nucleotide bindingi247 – 2515FADCombined sources1 Publication
Nucleotide bindingi359 – 3602ATPCombined sources1 Publication
Nucleotide bindingi390 – 3923FADCombined sources1 Publication

GO - Molecular functioni

  • ATP binding Source: UniProtKB
  • blue light photoreceptor activity Source: TAIR
  • FAD binding Source: UniProtKB
  • identical protein binding Source: IntAct
  • kinase activity Source: UniProtKB
  • metal ion binding Source: UniProtKB-KW
  • protein kinase activity Source: TAIR

GO - Biological processi

  • anthocyanin-containing compound metabolic process Source: UniProtKB
  • auxin transport Source: UniProtKB
  • blue light signaling pathway Source: TAIR
  • circadian regulation of calcium ion oscillation Source: TAIR
  • circadian rhythm Source: UniProtKB
  • defense response Source: UniProtKB-KW
  • detection of light stimulus Source: TAIR
  • flavin adenine dinucleotide metabolic process Source: UniProtKB
  • negative regulation of lateral root development Source: UniProtKB
  • oxidation-reduction process Source: TAIR
  • photomorphogenesis Source: TAIR
  • photoprotection Source: UniProtKB
  • phototropism Source: UniProtKB
  • plant organ development Source: UniProtKB
  • positive regulation of anion channel activity Source: UniProtKB
  • positive regulation of defense response to bacterium Source: UniProtKB
  • positive regulation of shade avoidance Source: UniProtKB
  • positive regulation of systemic acquired resistance Source: UniProtKB
  • protein autophosphorylation Source: UniProtKB
  • protein-chromophore linkage Source: UniProtKB-KW
  • regulation of circadian rhythm Source: UniProtKB
  • regulation of hydrogen peroxide metabolic process Source: UniProtKB
  • regulation of leaf morphogenesis Source: UniProtKB
  • regulation of meristem growth Source: TAIR
  • regulation of reactive oxygen species metabolic process Source: UniProtKB
  • regulation of unidimensional cell growth Source: TAIR
  • response to absence of light Source: UniProtKB
  • response to blue light Source: UniProtKB
  • response to far red light Source: UniProtKB
  • response to high light intensity Source: UniProtKB
  • response to light stimulus Source: UniProtKB
  • response to low fluence blue light stimulus by blue low-fluence system Source: UniProtKB
  • response to magnetism Source: UniProtKB
  • response to red light Source: UniProtKB
  • response to strigolactone Source: UniProtKB
  • response to water deprivation Source: TAIR
  • singlet oxygen-mediated programmed cell death Source: TAIR
  • stomatal movement Source: UniProtKB
Complete GO annotation...

Keywords - Molecular functioni

Photoreceptor protein, Receptor

Keywords - Biological processi

Apoptosis, Plant defense, Sensory transduction

Keywords - Ligandi

ATP-binding, Chromophore, FAD, Flavoprotein, Magnesium, Metal-binding, Nucleotide-binding

Enzyme and pathway databases

BioCyciARA:GQT-2162-MONOMER.

Names & Taxonomyi

Protein namesi
Recommended name:
Cryptochrome-11 Publication
Short name:
AtCry1 Publication
Short name:
Atcry11 Publication
Alternative name(s):
Blue light photoreceptor1 Publication
Protein BLUE LIGHT UNINHIBITED 11 Publication
Protein ELONGATED HYPOCOTYL 41 Publication
Protein OUT OF PHASE 2
Short name:
OOP2
Gene namesi
Name:CRY11 Publication
Synonyms:BLU11 Publication, HY41 Publication
Ordered Locus Names:At4g08920Imported
ORF Names:T3H13.14Imported, T3H13.5Imported
OrganismiArabidopsis thaliana (Mouse-ear cress)
Taxonomic identifieri3702 [NCBI]
Taxonomic lineageiEukaryotaViridiplantaeStreptophytaEmbryophytaTracheophytaSpermatophytaMagnoliophytaeudicotyledonsGunneridaePentapetalaerosidsmalvidsBrassicalesBrassicaceaeCamelineaeArabidopsis
Proteomesi
  • UP000006548 Componenti: Chromosome 4

Organism-specific databases

TAIRiAT4G08920.

Subcellular locationi

GO - Cellular componenti

  • cytoplasm Source: TAIR
  • nuclear body Source: UniProtKB
  • nucleus Source: UniProtKB
  • PML body Source: UniProtKB-SubCell
Complete GO annotation...

Keywords - Cellular componenti

Cytoplasm, Nucleus

Pathology & Biotechi

Disruption phenotypei

Prevents the shortening of period at 27 degrees Celsius, resulting in a long period phenotype. The double mutant cry1 cry2 is impaired in blue light signaling, resulting in long-period, lower-amplitude oscillations at 12 and 17 degrees Celsius and completely abolishing rhythms at 27 degrees Celsius (PubMed:23511208). Plants show reduced root and hypocotyl elongation in an anion channels activation-dependent manner at the plasma membrane, as well a reduced anthocyanin accumulation in blue light (PubMed:8528277, PubMed:12324610, PubMed:16703358, PubMed:21511871, PubMed:21511872, PubMed:9765547). Impaired blue/UV-A wavelengths-mediated inhibition of shoot regeneration (PubMed:22681544). Impaired detection of blue/green ratio in light leading to abnormal inhibition of hypocotyl growth (PubMed:20668058). Reduced attenuating effect of high fluence rates of blue light. This phenotype is stronger in the cry1 cry2 double mutant. Slow rate of curvature at low fluence rates of blue light in cry1 cry2 (PubMed:12857830). Lower anthocyanin accumulation in the phyB cry1 double mutant exposed to far-red light. Reduced chlorophyll levels in the phyB cry1 double mutant exposed to red light. In blue light, impaired cotyledon unfolding and smaller cotyledons, longer hypocotyls and less chlorophyll (PubMed:9733523). Impaired accumulation of reactive oxygen species (ROS) in double mutant cry1 cry2 exposed to high-intensity blue light (PubMed:25728686). Altered blue-light-triggered and singlet oxygen-mediated programmed cell death (PCD) (PubMed:17075038). The double mutant cry1 cry2 exhibits a reduced impact of near-null magnetic field on flowering in lower blue light intensity and short days (PubMed:26095447). Reduced hyponastic growth (differential growth-driven upward leaf movement) in low blue light fluence (PubMed:19558423). The double mutant cry1 cry2 is hyposensitive to the strigolactone analog GR24 (PubMed:24126495). The mutant cry1 exposed to a background of red light show severely impaired stomatal opening responses to blue light. The double mutant cry1 cry2 has reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday, associated with elevated abscisic acid levels (PubMed:22147516). The cry1 mutants grown in complete darkness have premature opening of the hypocotyl hook (PubMed:22855128). Reduced expression of nuclear genes encoding photoprotective components in response to extreme high light (PubMed:22786870). Reduced shade avoidance syndrome (SAS) when exposed to blue light attenuation (PubMed:21457375). Reduced growth at warm ambient temperatures (PubMed:21265897). Down-regulated local resistance and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato (Pst.) DC3000 under continuous light conditions, leading to pathogen proliferation (PubMed:20053798). When grown in blue light, increased growth of lateral roots and reduced sensitivity to auxin (IAA) on this phenotype (PubMed:20133010).23 Publications

Mutagenesis

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Mutagenesisi21 – 211D → N in cry1-401; genomes uncoupled mutant (gun) with defects in plastid-to-nucleus signaling. 1 Publication
Mutagenesisi66 – 661S → N: Loss of dimerization and activity. Abnormal hypocotyl elongation in blue light. 2 Publications
Mutagenesisi220 – 2201G → D in hy4-6; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 2 Publications
Mutagenesisi283 – 2831G → E in hy4-5; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 2 Publications
Mutagenesisi286 – 2861S → N in cry1-402; genomes uncoupled mutant (gun) with defects in plastid-to-nucleus signaling. 1 Publication
Mutagenesisi324 – 3241W → F: Impaired photoreduction in vitro, but not in vivo or in whole cell extracts, due to an alternative electron transport that involves small metabolites. Abolished intra-protein electron transfer cascade and impaired conformational change upon photoexcitation. 2 Publications
Mutagenesisi337 – 3371G → D: Abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi340 – 3401G → E in cry1-404 and hy4-1; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. Loss of activity. Genomes uncoupled mutant (gun) with defects in plastid-to-nucleus signaling. 4 Publications
Mutagenesisi347 – 3471G → E in hy4-16; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 2 Publications
Mutagenesisi347 – 3471G → R in hy4-15; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. Loss of dimerization and activity. 3 Publications
Mutagenesisi380 – 3801G → R: Constitutive light response. 1 Publication
Mutagenesisi396 – 3961D → N: Upon illumination, formation of the reduced anionic flavin (RED) flavin, useful for DNA repair, rather than the semi-reduced radical form (SR) flavin, which is correlated with cryptochrome activity. 1 Publication
Mutagenesisi400 – 4001W → F: Impaired photoreduction in vitro, but not in vivo or whole cell extracts, due to an alternative electron transport that involves small metabolites. 1 Publication
Mutagenesisi407 – 4071L → F: Gain of function mutant. Hypersensitive toward blue, red, and far-red light in hypocotyl growth inhibition. Very early flowering in short-day conditions, associated with enhanced expression of CO and FT. Impaired interaction with PHYB. 2 Publications
Mutagenesisi462 – 4621A → V: Loss of dimerization and activity. Abnormal hypocotyl elongation in blue light. 2 Publications
Mutagenesisi515 – 5151E → K in hy4-19; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi531 – 5311E → K in hy4-20; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi549 – 5491P → L in hy4-9; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi559 – 5591E → K in hy4-22; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi576 – 5761R → K in hy4-10; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi581 – 5811R → K in hy4-23; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi611 – 6111R → K in hy4-24; reduced anthocyanin accumulation and abnormal hypocotyl elongation in blue light. 1 Publication
Mutagenesisi623 – 6231E → K in cry1-403; genomes uncoupled mutant (gun) with defects in plastid-to-nucleus signaling. 1 Publication

PTM / Processingi

Molecule processing

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Chaini1 – 681681Cryptochrome-1PRO_0000085121Add
BLAST

Amino acid modifications

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Disulfide bondi80 ↔ 190InterchainCombined sources1 Publication
Modified residuei616 – 6161PhosphoserineBy similarity
Modified residuei621 – 6211PhosphothreonineBy similarity

Post-translational modificationi

Autophosphorylated; in response to blue light and when in complex with FAD cofactor (PubMed:12846824, PubMed:14523249, PubMed:9651577, PubMed:17073458). Kinase activity is optimal in the presence of magnesium ions, about 30 percent of the optimal activity in the presence of manganese ions, but inactive with calcium ions (PubMed:17073458). Adopts an open conformation when phosphorylated upon photoexcitation and thus interacts with signaling partner proteins (PubMed:21841916).1 Publication4 Publications

Keywords - PTMi

Disulfide bond, Phosphoprotein

Proteomic databases

PaxDbiQ43125.
PRIDEiQ43125.

PTM databases

iPTMnetiQ43125.

Expressioni

Tissue specificityi

Widely expressed (PubMed:8953250). Expressed in the aerial tissues (e.g. cotyledons and leaf primordia), but not detected in the roots (PubMed:11743105).2 Publications

Inductioni

Expression levels display circadian oscillations under constant conditions, with a high amplitude and an early phase, with maximal expression around 4-6 hours of the light phase. Induced by light (PubMed:11743105). Transcripts levels oscillate weakly and proportionally to temperature, but protein levels are stable, with higher levels at low temperature (12 degrees Celsius) (PubMed:23511208). Accumulates in response to low blue light (LBL) (PubMed:26724867).3 Publications

Gene expression databases

GenevisibleiQ43125. AT.

Interactioni

Subunit structurei

Homodimer. Interacts with ADO1, COP1 and PHYA. Interacts specifically with the dark/far-red (Pr) state of PHYB, but not with the red light-activated (Pfr) (PubMed:22577138). Interacts with PIF4 and PIF5 in the nucleus in response to low blue light (LBL) (PubMed:26724867). Binds to SPA1 and SPA4 in response to blue light, this interaction prevents SPA1/COP1 complex formation and thus avoid COP1-dependent degradation of the transcription factor HY5 by the proteasome and promotes hypocotyl elongation (PubMed:21511872, PubMed:21511871). Interacts with TCP2 (PubMed:26596765). Binding to ATP mediates conformational changes which facilitate flavin binding (PubMed:19327354, PubMed:17073458).13 Publications

Binary interactionsi

WithEntry#Exp.IntActNotes
itself6EBI-300703,EBI-300703
COP1P432544EBI-300703,EBI-301649
PHYA3P065932EBI-300703,EBI-630413From a different organism.

GO - Molecular functioni

  • identical protein binding Source: IntAct

Protein-protein interaction databases

BioGridi11769. 7 interactions.
IntActiQ43125. 3 interactions.
MINTiMINT-192438.
STRINGi3702.AT4G08920.1.

Structurei

Secondary structure

1
681
Legend: HelixTurnBeta strand
Show more details
Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Beta strandi14 – 207Combined sources
Beta strandi24 – 263Combined sources
Helixi28 – 369Combined sources
Beta strandi39 – 457Combined sources
Helixi47 – 504Combined sources
Helixi57 – 7620Combined sources
Beta strandi81 – 855Combined sources
Helixi89 – 10012Combined sources
Beta strandi104 – 1085Combined sources
Helixi113 – 12715Combined sources
Turni128 – 1303Combined sources
Beta strandi132 – 1365Combined sources
Helixi144 – 1463Combined sources
Beta strandi150 – 1523Combined sources
Helixi158 – 1669Combined sources
Helixi187 – 1893Combined sources
Helixi200 – 2067Combined sources
Helixi209 – 2124Combined sources
Helixi217 – 22812Combined sources
Helixi231 – 2344Combined sources
Turni235 – 2406Combined sources
Beta strandi242 – 2443Combined sources
Helixi251 – 2555Combined sources
Helixi261 – 27818Combined sources
Helixi281 – 30525Combined sources
Turni308 – 3125Combined sources
Turni318 – 3214Combined sources
Helixi328 – 3369Combined sources
Helixi342 – 35413Combined sources
Helixi359 – 37113Combined sources
Helixi377 – 38711Combined sources
Helixi393 – 40412Combined sources
Helixi419 – 4268Combined sources
Helixi431 – 4366Combined sources
Helixi438 – 4403Combined sources
Helixi445 – 4484Combined sources
Turni451 – 4533Combined sources
Helixi456 – 4627Combined sources
Turni467 – 4693Combined sources
Helixi477 – 49519Combined sources

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1U3CX-ray2.60A1-509[»]
1U3DX-ray2.45A1-509[»]
DisProtiDP00474.
ProteinModelPortaliQ43125.
SMRiQ43125. Positions 13-497.
ModBaseiSearch...
MobiDBiSearch...

Miscellaneous databases

EvolutionaryTraceiQ43125.

Family & Domainsi

Domains and Repeats

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Domaini12 – 141130Photolyase/cryptochrome alpha/betaSequence analysisAdd
BLAST

Region

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Regioni1 – 489489CNT1, binds chromophores to sense blue light and mediate CRY dimerization1 PublicationAdd
BLAST
Regioni490 – 681192CCT1/CCE1, mediates blue light signaling1 Publication1 PublicationAdd
BLAST

Domaini

The N-terminal domain CNT1 (1-489) is sufficient for autophosphorylation and is required for dimerization. The C-terminal domain CCT1 (490-681) of the homodimer binds to COP1.

Sequence similaritiesi

Belongs to the DNA photolyase class-1 family.Curated
Contains 1 photolyase/cryptochrome alpha/beta domain.Sequence analysis

Phylogenomic databases

eggNOGiKOG0133. Eukaryota.
COG0415. LUCA.
HOGENOMiHOG000245621.
InParanoidiQ43125.
KOiK12118.
OMAiQFPSEEN.

Family and domain databases

Gene3Di3.40.50.620. 1 hit.
InterProiIPR005101. Cryptochr/Photolyase_FAD-bd.
IPR002081. Cryptochrome/DNA_photolyase_1.
IPR020978. Cryptochrome_C.
IPR014134. Cryptochrome_pln.
IPR018394. DNA_photolyase_1_CS_C.
IPR006050. DNA_photolyase_N.
IPR014729. Rossmann-like_a/b/a_fold.
[Graphical view]
PfamiPF12546. Cryptochrome_C. 1 hit.
PF00875. DNA_photolyase. 1 hit.
PF03441. FAD_binding_7. 1 hit.
[Graphical view]
PRINTSiPR00147. DNAPHOTLYASE.
SUPFAMiSSF48173. SSF48173. 1 hit.
SSF52425. SSF52425. 1 hit.
TIGRFAMsiTIGR02766. crypt_chrom_pln. 1 hit.
PROSITEiPS00394. DNA_PHOTOLYASES_1_1. 1 hit.
PS00691. DNA_PHOTOLYASES_1_2. 1 hit.
PS51645. PHR_CRY_ALPHA_BETA. 1 hit.
[Graphical view]

Sequencei

Sequence statusi: Complete.

Q43125-1 [UniParc]FASTAAdd to basket

« Hide

        10         20         30         40         50
MSGSVSGCGS GGCSIVWFRR DLRVEDNPAL AAAVRAGPVI ALFVWAPEEE
60 70 80 90 100
GHYHPGRVSR WWLKNSLAQL DSSLRSLGTC LITKRSTDSV ASLLDVVKST
110 120 130 140 150
GASQIFFNHL YDPLSLVRDH RAKDVLTAQG IAVRSFNADL LYEPWEVTDE
160 170 180 190 200
LGRPFSMFAA FWERCLSMPY DPESPLLPPK KIISGDVSKC VADPLVFEDD
210 220 230 240 250
SEKGSNALLA RAWSPGWSNG DKALTTFING PLLEYSKNRR KADSATTSFL
260 270 280 290 300
SPHLHFGEVS VRKVFHLVRI KQVAWANEGN EAGEESVNLF LKSIGLREYS
310 320 330 340 350
RYISFNHPYS HERPLLGHLK FFPWAVDENY FKAWRQGRTG YPLVDAGMRE
360 370 380 390 400
LWATGWLHDR IRVVVSSFFV KVLQLPWRWG MKYFWDTLLD ADLESDALGW
410 420 430 440 450
QYITGTLPDS REFDRIDNPQ FEGYKFDPNG EYVRRWLPEL SRLPTDWIHH
460 470 480 490 500
PWNAPESVLQ AAGIELGSNY PLPIVGLDEA KARLHEALSQ MWQLEAASRA
510 520 530 540 550
AIENGSEEGL GDSAEVEEAP IEFPRDITME ETEPTRLNPN RRYEDQMVPS
560 570 580 590 600
ITSSLIRPEE DEESSLNLRN SVGDSRAEVP RNMVNTNQAQ QRRAEPASNQ
610 620 630 640 650
VTAMIPEFNI RIVAESTEDS TAESSSSGRR ERSGGIVPEW SPGYSEQFPS
660 670 680
EENGIGGGST TSSYLQNHHE ILNWRRLSQT G
Length:681
Mass (Da):76,695
Last modified:May 3, 2011 - v2
Checksum:i372A7E6DDC2AC076
GO

Sequence cautioni

The sequence AAB28725.2 differs from that shown. Reason: Frameshift at position 546. Curated
The sequence AAD17364.1 differs from that shown. Reason: Erroneous gene model prediction. Curated
The sequence CAB78016.1 differs from that shown. Reason: Erroneous gene model prediction. Curated

Experimental Info

Feature keyPosition(s)LengthDescriptionGraphical viewFeature identifierActions
Sequence conflicti40 – 401I → N in AAK32756 (PubMed:14593172).Curated
Sequence conflicti654 – 6541G → R in AAB28724 (PubMed:8232555).Curated

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
S66907 mRNA. Translation: AAB28724.1.
S66909 mRNA. Translation: AAB28725.2. Frameshift.
AF128396 Genomic DNA. Translation: AAD17364.1. Sequence problems.
AL161513 Genomic DNA. Translation: CAB78016.1. Sequence problems.
CP002687 Genomic DNA. Translation: AEE82696.1.
AF361588 mRNA. Translation: AAK32756.1.
AY124863 mRNA. Translation: AAM70572.1.
PIRiH85089.
S39058.
RefSeqiNP_567341.1. NM_116961.4.
UniGeneiAt.27730.

Genome annotation databases

EnsemblPlantsiAT4G08920.1; AT4G08920.1; AT4G08920.
GeneIDi826470.
GrameneiAT4G08920.1; AT4G08920.1; AT4G08920.
KEGGiath:AT4G08920.

Cross-referencesi

Sequence databases

Select the link destinations:
EMBLi
GenBanki
DDBJi
Links Updated
S66907 mRNA. Translation: AAB28724.1.
S66909 mRNA. Translation: AAB28725.2. Frameshift.
AF128396 Genomic DNA. Translation: AAD17364.1. Sequence problems.
AL161513 Genomic DNA. Translation: CAB78016.1. Sequence problems.
CP002687 Genomic DNA. Translation: AEE82696.1.
AF361588 mRNA. Translation: AAK32756.1.
AY124863 mRNA. Translation: AAM70572.1.
PIRiH85089.
S39058.
RefSeqiNP_567341.1. NM_116961.4.
UniGeneiAt.27730.

3D structure databases

Select the link destinations:
PDBei
RCSB PDBi
PDBji
Links Updated
EntryMethodResolution (Å)ChainPositionsPDBsum
1U3CX-ray2.60A1-509[»]
1U3DX-ray2.45A1-509[»]
DisProtiDP00474.
ProteinModelPortaliQ43125.
SMRiQ43125. Positions 13-497.
ModBaseiSearch...
MobiDBiSearch...

Protein-protein interaction databases

BioGridi11769. 7 interactions.
IntActiQ43125. 3 interactions.
MINTiMINT-192438.
STRINGi3702.AT4G08920.1.

PTM databases

iPTMnetiQ43125.

Proteomic databases

PaxDbiQ43125.
PRIDEiQ43125.

Protocols and materials databases

Structural Biology KnowledgebaseSearch...

Genome annotation databases

EnsemblPlantsiAT4G08920.1; AT4G08920.1; AT4G08920.
GeneIDi826470.
GrameneiAT4G08920.1; AT4G08920.1; AT4G08920.
KEGGiath:AT4G08920.

Organism-specific databases

TAIRiAT4G08920.

Phylogenomic databases

eggNOGiKOG0133. Eukaryota.
COG0415. LUCA.
HOGENOMiHOG000245621.
InParanoidiQ43125.
KOiK12118.
OMAiQFPSEEN.

Enzyme and pathway databases

BioCyciARA:GQT-2162-MONOMER.

Miscellaneous databases

EvolutionaryTraceiQ43125.
PROiQ43125.

Gene expression databases

GenevisibleiQ43125. AT.

Family and domain databases

Gene3Di3.40.50.620. 1 hit.
InterProiIPR005101. Cryptochr/Photolyase_FAD-bd.
IPR002081. Cryptochrome/DNA_photolyase_1.
IPR020978. Cryptochrome_C.
IPR014134. Cryptochrome_pln.
IPR018394. DNA_photolyase_1_CS_C.
IPR006050. DNA_photolyase_N.
IPR014729. Rossmann-like_a/b/a_fold.
[Graphical view]
PfamiPF12546. Cryptochrome_C. 1 hit.
PF00875. DNA_photolyase. 1 hit.
PF03441. FAD_binding_7. 1 hit.
[Graphical view]
PRINTSiPR00147. DNAPHOTLYASE.
SUPFAMiSSF48173. SSF48173. 1 hit.
SSF52425. SSF52425. 1 hit.
TIGRFAMsiTIGR02766. crypt_chrom_pln. 1 hit.
PROSITEiPS00394. DNA_PHOTOLYASES_1_1. 1 hit.
PS00691. DNA_PHOTOLYASES_1_2. 1 hit.
PS51645. PHR_CRY_ALPHA_BETA. 1 hit.
[Graphical view]
ProtoNetiSearch...

Publicationsi

« Hide 'large scale' publications
  1. "HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor."
    Ahmad M., Cashmore A.R.
    Nature 366:162-166(1993) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [MRNA].
    Strain: cv. Columbia.
  2. "Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana."
    Mayer K.F.X., Schueller C., Wambutt R., Murphy G., Volckaert G., Pohl T., Duesterhoeft A., Stiekema W., Entian K.-D., Terryn N., Harris B., Ansorge W., Brandt P., Grivell L.A., Rieger M., Weichselgartner M., de Simone V., Obermaier B.
    , Mache R., Mueller M., Kreis M., Delseny M., Puigdomenech P., Watson M., Schmidtheini T., Reichert B., Portetelle D., Perez-Alonso M., Boutry M., Bancroft I., Vos P., Hoheisel J., Zimmermann W., Wedler H., Ridley P., Langham S.-A., McCullagh B., Bilham L., Robben J., van der Schueren J., Grymonprez B., Chuang Y.-J., Vandenbussche F., Braeken M., Weltjens I., Voet M., Bastiaens I., Aert R., Defoor E., Weitzenegger T., Bothe G., Ramsperger U., Hilbert H., Braun M., Holzer E., Brandt A., Peters S., van Staveren M., Dirkse W., Mooijman P., Klein Lankhorst R., Rose M., Hauf J., Koetter P., Berneiser S., Hempel S., Feldpausch M., Lamberth S., Van den Daele H., De Keyser A., Buysshaert C., Gielen J., Villarroel R., De Clercq R., van Montagu M., Rogers J., Cronin A., Quail M.A., Bray-Allen S., Clark L., Doggett J., Hall S., Kay M., Lennard N., McLay K., Mayes R., Pettett A., Rajandream M.A., Lyne M., Benes V., Rechmann S., Borkova D., Bloecker H., Scharfe M., Grimm M., Loehnert T.-H., Dose S., de Haan M., Maarse A.C., Schaefer M., Mueller-Auer S., Gabel C., Fuchs M., Fartmann B., Granderath K., Dauner D., Herzl A., Neumann S., Argiriou A., Vitale D., Liguori R., Piravandi E., Massenet O., Quigley F., Clabauld G., Muendlein A., Felber R., Schnabl S., Hiller R., Schmidt W., Lecharny A., Aubourg S., Chefdor F., Cooke R., Berger C., Monfort A., Casacuberta E., Gibbons T., Weber N., Vandenbol M., Bargues M., Terol J., Torres A., Perez-Perez A., Purnelle B., Bent E., Johnson S., Tacon D., Jesse T., Heijnen L., Schwarz S., Scholler P., Heber S., Francs P., Bielke C., Frishman D., Haase D., Lemcke K., Mewes H.-W., Stocker S., Zaccaria P., Bevan M., Wilson R.K., de la Bastide M., Habermann K., Parnell L., Dedhia N., Gnoj L., Schutz K., Huang E., Spiegel L., Sekhon M., Murray J., Sheet P., Cordes M., Abu-Threideh J., Stoneking T., Kalicki J., Graves T., Harmon G., Edwards J., Latreille P., Courtney L., Cloud J., Abbott A., Scott K., Johnson D., Minx P., Bentley D., Fulton B., Miller N., Greco T., Kemp K., Kramer J., Fulton L., Mardis E., Dante M., Pepin K., Hillier L.W., Nelson J., Spieth J., Ryan E., Andrews S., Geisel C., Layman D., Du H., Ali J., Berghoff A., Jones K., Drone K., Cotton M., Joshu C., Antonoiu B., Zidanic M., Strong C., Sun H., Lamar B., Yordan C., Ma P., Zhong J., Preston R., Vil D., Shekher M., Matero A., Shah R., Swaby I.K., O'Shaughnessy A., Rodriguez M., Hoffman J., Till S., Granat S., Shohdy N., Hasegawa A., Hameed A., Lodhi M., Johnson A., Chen E., Marra M.A., Martienssen R., McCombie W.R.
    Nature 402:769-777(1999) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].
    Strain: cv. Columbia.
  3. The Arabidopsis Information Resource (TAIR)
    Submitted (APR-2011) to the EMBL/GenBank/DDBJ databases
    Cited for: GENOME REANNOTATION.
    Strain: cv. Columbia.
  4. "Empirical analysis of transcriptional activity in the Arabidopsis genome."
    Yamada K., Lim J., Dale J.M., Chen H., Shinn P., Palm C.J., Southwick A.M., Wu H.C., Kim C.J., Nguyen M., Pham P.K., Cheuk R.F., Karlin-Newmann G., Liu S.X., Lam B., Sakano H., Wu T., Yu G.
    , Miranda M., Quach H.L., Tripp M., Chang C.H., Lee J.M., Toriumi M.J., Chan M.M., Tang C.C., Onodera C.S., Deng J.M., Akiyama K., Ansari Y., Arakawa T., Banh J., Banno F., Bowser L., Brooks S.Y., Carninci P., Chao Q., Choy N., Enju A., Goldsmith A.D., Gurjal M., Hansen N.F., Hayashizaki Y., Johnson-Hopson C., Hsuan V.W., Iida K., Karnes M., Khan S., Koesema E., Ishida J., Jiang P.X., Jones T., Kawai J., Kamiya A., Meyers C., Nakajima M., Narusaka M., Seki M., Sakurai T., Satou M., Tamse R., Vaysberg M., Wallender E.K., Wong C., Yamamura Y., Yuan S., Shinozaki K., Davis R.W., Theologis A., Ecker J.R.
    Science 302:842-846(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA].
    Strain: cv. Columbia.
  5. "Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation."
    Liscum E., Hangarter R.P.
    Plant Cell 3:685-694(1991) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  6. "Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity."
    Malhotra K., Kim S.-T., Batschauer A., Dawut L., Sancar A.
    Biochemistry 34:6892-6899(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, COFACTOR.
  7. "Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation."
    Ahmad M., Lin C., Cashmore A.R.
    Plant J. 8:653-658(1995) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, MUTAGENESIS OF GLY-220; GLY-283; GLY-340; GLY-347; GLU-515; GLU-531; PRO-549; GLU-559; ARG-576; ARG-581 AND ARG-611.
  8. "Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development."
    Lin C., Ahmad M., Cashmore A.R.
    Plant J. 10:893-902(1996) [PubMed] [Europe PMC] [Abstract]
    Cited for: CHARACTERIZATION.
  9. "Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism."
    Ahmad M., Jarillo J.A., Smirnova O., Cashmore A.R.
    Nature 392:720-723(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, MUTAGENESIS OF GLY-340.
  10. "The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro."
    Ahmad M., Jarillo J.A., Smirnova O., Cashmore A.R.
    Mol. Cell 1:939-948(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PHYA, PHOSPHORYLATION.
  11. "Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development."
    Neff M.M., Chory J.
    Plant Physiol. 118:27-35(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Landsberg erecta.
  12. "Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings."
    Parks B.M., Cho M.H., Spalding E.P.
    Plant Physiol. 118:609-615(1998) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Landsberg erecta.
  13. "The C termini of Arabidopsis cryptochromes mediate a constitutive light response."
    Yang H.-Q., Wu Y.-J., Tang R.-H., Liu D., Liu Y., Cashmore A.R.
    Cell 103:815-827(2000) [PubMed] [Europe PMC] [Abstract]
    Cited for: DOMAINS.
  14. "An Arabidopsis circadian clock component interacts with both CRY1 and phyB."
    Jarillo J.A., Capel J., Tang R.-H., Yang H.-Q., Alonso J.M., Ecker J.R., Cashmore A.R.
    Nature 410:487-490(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH ADO1.
  15. "Direct interaction of Arabidopsis cryptochromes with COP1 in light control development."
    Wang H., Ma L.-G., Li J.-M., Zhao H.-Y., Deng X.W.
    Science 294:154-158(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH COP1.
  16. "The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1."
    Yang H.-Q., Tang R.-H., Cashmore A.R.
    Plant Cell 13:2573-2587(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH COP1.
  17. "Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis."
    Toth R., Kevei E., Hall A., Millar A.J., Nagy F., Kozma-Bognar L.
    Plant Physiol. 127:1607-1616(2001) [PubMed] [Europe PMC] [Abstract]
    Cited for: INDUCTION BY CIRCADIAN CLOCK AND LIGHT, TISSUE SPECIFICITY.
  18. "Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1."
    Bouly J.-P., Giovani B., Djamei A., Mueller M., Zeugner A., Dudkin E.A., Batschauer A., Ahmad M.
    Eur. J. Biochem. 270:2921-2928(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION.
  19. "Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1."
    Shalitin D., Yu X., Maymon M., Mockler T., Lin C.
    Plant Cell 15:2421-2429(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: PHOSPHORYLATION.
  20. "Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes."
    Whippo C.W., Hangarter R.P.
    Plant Physiol. 132:1499-1507(2003) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  21. "A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening."
    Mao J., Zhang Y.C., Sang Y., Li Q.H., Yang H.Q.
    Proc. Natl. Acad. Sci. U.S.A. 102:12270-12275(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  22. "Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor."
    Partch C.L., Clarkson M.W., Ozgur S., Lee A.L., Sancar A.
    Biochemistry 44:3795-3805(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: ENZYME REGULATION.
  23. "N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1."
    Sang Y., Li Q.-H., Rubio V., Zhang Y.-C., Mao J., Deng X.-W., Yang H.-Q.
    Plant Cell 17:1569-1584(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBUNIT, MUTAGENESIS OF SER-66; GLY-347 AND ALA-462.
  24. "High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions."
    Koroleva O.A., Tomlinson M.L., Leader D., Shaw P., Doonan J.H.
    Plant J. 41:162-174(2005) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
  25. "Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes."
    Ozguer S., Sancar A.
    Biochemistry 45:13369-13374(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: AUTOPHOSPHORYLATION, COFACTOR, ATP-BINDING.
  26. "Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana."
    Canamero R.C., Bakrim N., Bouly J.-P., Garay A., Dudkin E.E., Habricot Y., Ahmad M.
    Planta 224:995-1003(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  27. "Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana."
    Danon A., Coll N.S., Apel K.
    Proc. Natl. Acad. Sci. U.S.A. 103:17036-17041(2006) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION IN PCD, DISRUPTION PHENOTYPE.
  28. "Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis."
    Ruckle M.E., DeMarco S.M., Larkin R.M.
    Plant Cell 19:3944-3960(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF ASP-21; SER-286; GLY-340 AND GLU-623.
    Strain: cv. Columbia.
  29. "Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings."
    Wu G., Spalding E.P.
    Proc. Natl. Acad. Sci. U.S.A. 104:18813-18818(2007) [PubMed] [Europe PMC] [Abstract]
    Cited for: SUBCELLULAR LOCATION.
  30. "CRY1 inhibits COP1-mediated degradation of BIT1, a MYB transcription factor, to activate blue light-dependent gene expression in Arabidopsis."
    Hong S.H., Kim H.J., Ryu J.S., Choi H., Jeong S., Shin J., Choi G., Nam H.G.
    Plant J. 55:361-371(2008) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  31. "Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome."
    Burney S., Hoang N., Caruso M., Dudkin E.A., Ahmad M., Bouly J.-P.
    FEBS Lett. 583:1427-1433(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: ATP BINDING.
  32. "Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation."
    Millenaar F.F., van Zanten M., Cox M.C., Pierik R., Voesenek L.A., Peeters A.J.
    New Phytol. 184:141-152(2009) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  33. Cited for: REVIEW ON CRYPTOCHROMES.
  34. Cited for: REVIEW ON PHOTORECEPTORS.
  35. "Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport."
    Zeng J., Wang Q., Lin J., Deng K., Zhao X., Tang D., Liu X.
    J. Plant Physiol. 167:670-673(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  36. "CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis."
    Wu L., Yang H.-Q.
    Mol. Plant 3:539-548(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  37. "Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis."
    Sellaro R., Crepy M., Trupkin S.A., Karayekov E., Buchovsky A.S., Rossi C., Casal J.J.
    Plant Physiol. 154:401-409(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Landsberg erecta.
  38. "A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering."
    Exner V., Alexandre C., Rosenfeldt G., Alfarano P., Nater M., Caflisch A., Gruissem W., Batschauer A., Hennig L.
    Plant Physiol. 154:1633-1645(2010) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF LEU-407.
    Strain: cv. Columbia and cv. Landsberg erecta.
  39. "Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism."
    Lian H.-L., He S.-B., Zhang Y.-C., Zhu D.-M., Zhang J.-Y., Jia K.-P., Sun S.-X., Li L., Yang H.-Q.
    Genes Dev. 25:1023-1028(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, SUBCELLULAR LOCATION, INTERACTION WITH SPA1.
    Strain: cv. Columbia.
  40. "Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light."
    Liu B., Zuo Z., Liu H., Liu X., Lin C.
    Genes Dev. 25:1029-1034(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INTERACTION WITH SPA1 AND SPA4.
  41. "Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception."
    Mueller P., Ahmad M.
    J. Biol. Chem. 286:21033-21040(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  42. "Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome."
    Kondoh M., Shiraishi C., Mueller P., Ahmad M., Hitomi K., Getzoff E.D., Terazima M.
    J. Mol. Biol. 413:128-137(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, MUTAGENESIS OF TRP-324.
  43. "Light receptor action is critical for maintaining plant biomass at warm ambient temperatures."
    Foreman J., Johansson H., Hornitschek P., Josse E.-M., Fankhauser C., Halliday K.J.
    Plant J. 65:441-452(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  44. "Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades."
    Keller M.M., Jaillais Y., Pedmale U.V., Moreno J.E., Chory J., Ballare C.L.
    Plant J. 67:195-207(2011) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  45. "Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1."
    Burney S., Wenzel R., Kottke T., Roussel T., Hoang N., Bouly J.P., Bittl R., Heberle J., Ahmad M.
    Angew. Chem. Int. Ed. 51:9356-9360(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF ASP-396.
  46. "Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins."
    Hughes R.M., Vrana J.D., Song J., Tucker C.L.
    J. Biol. Chem. 287:22165-22172(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH PHYB, MUTAGENESIS OF LEU-407.
  47. "Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response."
    Gu N.-N., Zhang Y.-C., Yang H.-Q.
    Mol. Plant 5:85-97(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: MUTAGENESIS OF GLY-380, SUBCELLULAR LOCATION.
  48. "The CRYPTOCHROME1-dependent response to excess light is mediated through the transcriptional activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis."
    Shaikhali J., de Dios Barajas-Lopez J., Oetvoes K., Kremnev D., Garcia A.S., Srivastava V., Wingsle G., Bako L., Strand A.
    Plant Cell 24:3009-3025(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  49. "cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis."
    Fox A.R., Soto G.C., Jones A.M., Casal J.J., Muschietti J.P., Mazzella M.A.
    Plant Mol. Biol. 80:315-324(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia and cv. Landsberg erecta.
  50. "Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight."
    Boccalandro H.E., Giordano C.V., Ploschuk E.L., Piccoli P.N., Bottini R., Casal J.J.
    Plant Physiol. 158:1475-1484(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  51. "Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor."
    Maeda K., Robinson A.J., Henbest K.B., Hogben H.J., Biskup T., Ahmad M., Schleicher E., Weber S., Timmel C.R., Hore P.J.
    Proc. Natl. Acad. Sci. U.S.A. 109:4774-4779(2012) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  52. "Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures."
    Gould P.D., Ugarte N., Domijan M., Costa M., Foreman J., Macgregor D., Rose K., Griffiths J., Millar A.J., Finkenstaedt B., Penfield S., Rand D.A., Halliday K.J., Hall A.J.W.
    Mol. Syst. Biol. 9:650-650(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, INDUCTION BY TEMPERATURE.
    Strain: cv. Columbia.
  53. "The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signalling."
    Nameth B., Dinka S.J., Chatfield S.P., Morris A., English J., Lewis D., Oro R., Raizada M.N.
    Plant Cell Environ. 36:68-86(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Landsberg erecta.
  54. "Lifetimes of Arabidopsis cryptochrome signaling states in vivo."
    Herbel V., Orth C., Wenzel R., Ahmad M., Bittl R., Batschauer A.
    Plant J. 74:583-592(2013) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
    Strain: cv. Landsberg erecta.
  55. "ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome."
    Cailliez F., Mueller P., Gallois M., de la Lande A.
    J. Am. Chem. Soc. 136:12974-12986(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION.
  56. "Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis."
    Jia K.-P., Luo Q., He S.-B., Lu X.-D., Yang H.-Q.
    Mol. Plant 7:528-540(2014) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Columbia.
  57. "Suppression of Arabidopsis flowering by near-null magnetic field is affected by light."
    Xu C., Li Y., Yu Y., Zhang Y., Wei S.
    Bioelectromagnetics 36:476-479(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
  58. "TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis."
    He Z., Zhao X., Kong F., Zuo Z., Liu X.
    J. Exp. Bot. 67:775-785(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: INTERACTION WITH TCP2.
  59. "The CNT1 domain of Arabidopsis CRY1 Alone is sufficient to mediate blue light inhibition of hypocotyl elongation."
    He S.B., Wang W.X., Zhang J.Y., Xu F., Lian H.L., Li L., Yang H.Q.
    Mol. Plant 8:822-825(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE, MUTAGENESIS OF SER-66; GLY-220; GLY-283; GLY-337; GLY-340; GLY-347 AND ALA-462, DOMAINS.
  60. "Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism."
    Consentino L., Lambert S., Martino C., Jourdan N., Bouchet P.-E., Witczak J., Castello P., El-Esawi M., Corbineau F., d'Harlingue A., Ahmad M.
    New Phytol. 206:1450-1462(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, DISRUPTION PHENOTYPE.
    Strain: cv. Wassilewskija.
  61. "Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1."
    El-Esawi M., Glascoe A., Engle D., Ritz T., Link J., Ahmad M.
    Plant Signal. Behav. 10:E1063758-E1063758(2015) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, MUTAGENESIS OF TRP-324 AND TRP-400.
  62. "Cryptochromes interact directly with PIFs to control plant growth in limiting blue light."
    Pedmale U.V., Huang S.S., Zander M., Cole B.J., Hetzel J., Ljung K., Reis P.A., Sridevi P., Nito K., Nery J.R., Ecker J.R., Chory J.
    Cell 164:233-245(2016) [PubMed] [Europe PMC] [Abstract]
    Cited for: FUNCTION, INDUCTION BY LOW BLUE LIGHT, INTERACTION WITH PIF4 AND PIF5, SUBCELLULAR LOCATION.
  63. "Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana."
    Brautigam C.A., Smith B.S., Ma Z., Palnitkar M., Tomchick D.R., Machius M., Deisenhofer J.
    Proc. Natl. Acad. Sci. U.S.A. 101:12142-12147(2004) [PubMed] [Europe PMC] [Abstract]
    Cited for: X-RAY CRYSTALLOGRAPHY (2.45 ANGSTROMS) OF 1-509 IN COMPLEX WITH ATP; FAD AND MAGNESIUM, DISULFIDE BONDS, BINDING SITES.

Entry informationi

Entry nameiCRY1_ARATH
AccessioniPrimary (citable) accession number: Q43125
Secondary accession number(s): Q43126
, Q8L7Y1, Q9ASZ2, Q9M0S9, Q9ZPF0
Entry historyi
Integrated into UniProtKB/Swiss-Prot: November 1, 1997
Last sequence update: May 3, 2011
Last modified: July 6, 2016
This is version 149 of the entry and version 2 of the sequence. [Complete history]
Entry statusiReviewed (UniProtKB/Swiss-Prot)
Annotation programPlant Protein Annotation Program

Miscellaneousi

Caution

Was originally thought to be a DNA photolyase.1 Publication

Keywords - Technical termi

3D-structure, Complete proteome, Reference proteome

Documents

  1. Arabidopsis thaliana
    Arabidopsis thaliana: entries and gene names
  2. PDB cross-references
    Index of Protein Data Bank (PDB) cross-references
  3. SIMILARITY comments
    Index of protein domains and families

Similar proteinsi

Links to similar proteins from the UniProt Reference Clusters (UniRef) at 100%, 90% and 50% sequence identity:
100%UniRef100 combines identical sequences and sub-fragments with 11 or more residues from any organism into one UniRef entry.
90%UniRef90 is built by clustering UniRef100 sequences that have at least 90% sequence identity to, and 80% overlap with, the longest sequence (a.k.a seed sequence).
50%UniRef50 is built by clustering UniRef90 seed sequences that have at least 50% sequence identity to, and 80% overlap with, the longest sequence in the cluster.